Do you have the picture of the data?
_Mg + _HCL = _MgCl2 + H2
Separate the terms on each side:
_Mg + _HCl = _MgCl2 + H2
Mg- 1 Mg-1
H-1 H-2
Cl-1 Cl-2
Mg is balanced on both sides so move on to the next (put a 1 in the space).
1Mg
There are two H's and two Cl's on the results side, so to balance the equation put a 2 as a coefficient for HCl and it'll all balance out.
2HCl
Balamced equation will be:
1Mg + 2HCL = 1MgCl2 + H2
Answer:
Explanation:
Data:
50/50 ethylene glycol (EG):water
V = 4.70 gal
ρ(EG) = 1.11 g/mL
ρ(water) = 0.988 g/mL
Calculations:
The formula for the boiling point elevation ΔTb is
i is the van’t Hoff factor — the number of moles of particles you get from 1 mol of solute. For EG, i = 1.
1. Moles of EG
2. Kilograms of water
3. Molal concentration of EG
4. Increase in boiling point
5. Boiling point
Answer:
Al(NO₃)₃ > KI > HF > CH₃OH
Explanation:
The electrical conductivities of the solutions will depend on the concentration of ions in solution.
Al(NO₃)₃ solution contains 0.1 M of Al³⁺ ions and 0.3 M of NO₃⁻ ions
KI solution contains 0.1 M of K⁺ ions and 0.1 M of I⁻ ions
HF solution contains less than 0.1 M of H⁺ ions and less then 0.1 M of F⁻ ions, because the HF acid will not dissociate completely
CH₃OH practically it does not dissociate, so in the solution will not be electrical conductive (comparative with the other solutions)
The solutions in order of decreasing intensity of the bulb are ranked as following:
Al(NO₃)₃ > KI > HF > CH₃OH
Answer:
The expression of an equilibrium constant will given as:
Explanation:
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as
K is the constant of a certain reaction when it is in equilibrium
The expression of an equilibrium constant will given as: