Answer:
John would be running 1560 miles in a year
Answer:
621
629
Step-by-step explanation:
We know that
sin
(
x
+
y
)
=
sin
x
cos
y
+
sin
y
cos
x
If
cos
x
=
8
17
and
sin
y
=
12
37
We can use,
cos
2
x
+
sin
2
x
=
1
and
cos
2
y
+
sin
2
y
=
1
To calculate
sin
x
and
cos
y
sin
2
x
=
1
−
cos
2
x
=
1
−
(
8
17
)
2
=
225
17
2
sin
x
=
15
17
cos
2
y
=
1
−
sin
2
y
=
1
−
(
12
37
)
2
=
1225
37
2
cos
y
=
35
37
so,
sin
(
x
+
y
)
=
15
17
⋅
35
37
+
12
37
⋅
8
17
=
621
629
Answer link
Shwetank Mauria
Nov 22, 2016
sin
(
x
+
y
)
=
621
629
or
−
429
629
depending on the quadrant in which sine and cosine lie.
Explanation:
Before we commence further, it may be mentioned that as
cos
x
=
8
17
,
x
is in
Q
1
or
Q
4
i.e.
sin
x
could be positive or negative and as
sin
y
=
12
37
,
y
is in
Q
1
or
Q
2
i.e.
cos
y
could be positive or negative.
Hence four combinations for
(
x
+
y
)
are there and for
sin
(
x
+
y
)
=
sin
x
cos
y
+
cos
x
sin
y
, there are four possibilities.
Now as
cos
x
=
8
17
,
sin
x
=
√
1
−
(
8
17
)
2
=
√
1
−
64
289
=
√
225
289
=
±
15
17
and
as
sin
y
=
12
37
,
cos
y
=
√
1
−
(
12
37
)
2
=
√
1
−
144
1369
=
√
1225
1369
=
±
35
37
Hence,
(1) when
x
and
y
are in
Q
1
sin
(
x
+
y
)
=
15
17
×
35
37
+
8
17
×
12
37
=
525
+
96
629
=
621
629
(2) when
x
is in
Q
1
and
y
is in
Q
2
sin
(
x
+
y
)
=
15
17
×
−
35
37
+
8
17
×
12
37
=
−
525
+
96
629
=
−
429
629
(3) when
x
is in
Q
4
and
y
is in
Q
2
sin
(
x
+
y
)
=
−
15
17
×
−
35
37
+
8
17
×
12
37
=
525
+
96
629
=
621
629
(4) when
x
is in
Q
4
and
y
is in
Q
1
sin
(
x
+
y
)
=
−
15
17
×
35
37
+
8
17
×
12
37
=
−
525
+
96
629
=
−
429
629
Hence,
sin
(
x
+
y
)
=
621
629
or
−
429
629
Answer:
Sara's number is 28
Step-by-step explanation:
Let's assign Sara's number the variable x and solve this equation using the information provided.
"If you subtract 14 from my number"
x - 14
"and multiply the difference by - 3"
-3(x - 14)
"the result is – 42."
-3(x - 14) = -42
Now we can solve from here for x.
-3(x - 14) = -42
x - 14 = 14
x = 28
Given:


To find:
Whether it is possible that Line AB intersects line CD.
Solution:
We have,


The angles
and
are same sided interior angles.
If two lines are parallel and a transversal line intersect them, then the same sided interior angles are supplementary angles and their sum is 180 degrees.



So, the lines AB and CD are not parallel to each other.
Therefore, the intersection of lines AB and CD is possible.