Answer/Step-by-step explanation:
Given:
m<3 = 54°
m<2 = right angle
a. m<1 + m<2 + m<3 = 180° (angles in a straight line)
m<1 + 90° + 54° = 180° (substitution)
m<1 + 144° = 180°
m<1 = 180° - 144°
m<1 = 36°
b. m<2 = 90° (right angle)
c. m<4 = m<1 (vertical angles)
m<4 = 36° (substitution)
d. m<5 = m<2 (vertical angles)
m<5 = 90°
e. m<6 = m<3 (vertical angles)
m<6 = 54°
f. m<7 + m<6 = 180° (same side interior angles)
m<7 + 54° = 180° (substitution)
m<7 = 180 - 54
m<7 = 126°
g. m<8 = m<6 (alternate interior angles are congruent)
m<8 = 54°
h. m<9 = m<7 (vertical angles)
m<9 = 126°
i. m<10 = m<8 (vertical angles)
m<10 = 54°
j. m<11 = m<4 (alternate interior angles are congruent)
m<11 = 36° (substitution)
k. m<12 + m<11 = 180° (linear pair)
m<12 + 36° = 180° (substitution)
m<12 = 180° - 36°
m<12 = 144°
l. m<13 = m<11 (vertical angles)
m<13 = 36°
m. m<14 = m<12 (vertical angles)
m<14 = 144° (substitution)