Answer:
To work out the multiplier, first add or subtract the percentage from 100, then convert to a decimal. Example: we want to add 20% to £110. To work out the multiplier, add 20 to 100, to get 120, and then change it to a decimal (divide by 100) to get 1.2.
meiabatten191 helped me out on this question too.
There are 120 different combinations.
There are 5 to use for the first bead; then after it is used, 4 for the second; 3 for the third; 2 for the fourth; and 1 for the fifth and last bead:
5*4*3*2*1 = 120.
It is a good thing to remember. Of course, not all, but some basic numbers that appear all the time such as the numbers from 2 to 13 should be remembered as they appear in numerous assignments and tests.
Answer:
a)
b) ![P(X> 2)=1-P(X\leq 2)=1-[0.0211+0.0995+0.211]=0.668](https://tex.z-dn.net/?f=P%28X%3E%202%29%3D1-P%28X%5Cleq%202%29%3D1-%5B0.0211%2B0.0995%2B0.211%5D%3D0.668)
c)
Step-by-step explanation:
1) Previous concepts
The binomial distribution is a "DISCRETE probability distribution that summarizes the probability that a value will take one of two independent values under a given set of parameters. The assumptions for the binomial distribution are that there is only one outcome for each trial, each trial has the same probability of success, and each trial is mutually exclusive, or independent of each other".
2) Solution to the problem
Let X the random variable of interest, on this case we now that:
The probability mass function for the Binomial distribution is given as:
Where (nCx) means combinatory and it's given by this formula:
Part a
Part b
![P(X> 2)=1-P(X\leq 2)=1-[P(X=0)+P(X=1)+P(X=2)]](https://tex.z-dn.net/?f=P%28X%3E%202%29%3D1-P%28X%5Cleq%202%29%3D1-%5BP%28X%3D0%29%2BP%28X%3D1%29%2BP%28X%3D2%29%5D)
![P(X> 2)=1-P(X\leq 2)=1-[0.0211+0.0995+0.211]=0.668](https://tex.z-dn.net/?f=P%28X%3E%202%29%3D1-P%28X%5Cleq%202%29%3D1-%5B0.0211%2B0.0995%2B0.211%5D%3D0.668)
Part c