Answer:
Position at t= 4 seconds is 144 m
Explanation:
It is given that acceleration, a = 18 t, where t is the time.
We know that Velocity, 
Substituting value of a,
Velocity, 
We know that at t = 0, v = -12 m/s
So, 
So velocity, 
We also know that displacement, 
Substituting value of v,
Displacement, 
We know that at t = 0, particle is at origin, x =0.
So, 
Displacement, 
At t = 4 seconds

Position at t= 4 seconds is 144 m
Answer: False
Explanation:
It's received in elliptical cavities.
The answer is D, the amount of energy stays the same.
Answer:
W = 3.1 N
Explanation:
moments about any convenient point will sum to zero.
I choose summing about the knife edge mark and will assume the ruler of weight W is of uniform construction.
I will assume the ruler weight makes a positive moment
W[55 - 50) - 0.040(9.8)[ 95 - 55] = 0
5W = 15.68
W = 3.136
The motion of a falling whirligig is different to that of a falling paper ball due to spinning.
<h3>Type of motion performed by whirligig and falling paper ball </h3>
The motion of a falling whirligig is different from the motion of a falling paper ball because the paper ball falls on the ground without spinning while on the other hand, the whirligig falls on the ground along with spinning.
The falling whirligig performs two motion i.e. one is falling on the ground and the other is spinning during motion whereas paper ball performs one motion i.e. motion in the air towards the ground so we can conclude that the motion of a falling whirligig is different than of a falling paper ball.
Learn more about motion here: brainly.com/question/453639