Average velocity = displacement / time
In this case, since you move left 60, then right 60, you return to the starting point making the displacement zero.
average velocity = 0 / 60 sec = zero
the average speed is calculated using total distance traveled.
average speed = distance / time
average speed = 120 meters / 60 sec = 2 m/s
My answer -
the corona,
the sun's outer layer, reaches temperatures of up to 2 million degrees
Fahrenheit (1.1 million Celsius). At this level, the sun's gravity can't
hold on to the rapidly moving particles, and it streams away from the
star.
The sun's activity shifts over the course of its 11-year cycle, with
sun spot numbers, radiation levels, and ejected material changing over
time. These alterations affect the properties of the solar wind,
including its magnetic field properties, velocity, temperature and
density. The wind also differs based on where on the sun it comes from
and how quickly that portion is rotating.
The velocity of the solar wind
is higher over coronal holes, reaching speeds of up to 500 miles (800
kilometers) per second. The temperature and density over coronal holes
are low, and the magnetic field is weak, so the field lines are open to
space. These holes occur at the poles and low latitudes, and reach their
largest when activity on the sun is at its minimum. Temperatures in the
fast wind can reach up to 1 million degrees F (800,000 C).
At the coronal streamer belt around the equator, the solar wind travels
more slowly, at around 200 miles (300 km) per second. Temperatures in
the slow wind reach up to 2.9 million F (1.6 million C).
p.s
Glad to help you and if you need anything else on brainly let me know so I can elp you again have an AWESOME!!! :^)
Answer:
The new distance is d = 0.447 d₀
Explanation:
The electric out is given by Coulomb's Law
F = k q₁ q₂ / r²
This electric force is in balance with tension.
We reduce the charge of sphere B to 1/5 of its initial value (
=q₂ = q₂ / 5) than new distance (d = n d₀)
dat
q₁ = 
q₂ = 
r = d₀
In order for the deviation to maintain the electric force it should not change, so we apply the Coulomb equation for the two points
F = k q₁ q₂ / d₀²
F = k q₁ (q₂ / 5) / (n d₀)²
.k q₁ q₂ / d₀² = q₁ q₂ / (5 n² d₀²)
5 n² = 1
n = √ 1/5
n = 0.447
The new distance is
d = 0.447 d₀