<h3><u>Answer</u>;</h3>
-The total momentum of an isolated system is constant.
-The total momentum of any number of particles is equal to the vector sum of the momenta of the individual particles.
-The vector sum of forces acting on a particle equals the rate of change of momentum of the particle with respect to time.
<h3><u>Explanation</u>;</h3>
- Momentum is a vector quantity, and therefore we need to use vector addition when summing together the momenta of the multiple bodies which make up a system.
- The vector sum of forces acting on a particle is equivalent to the rate of change of momentum of the particle with respect to time. This is according to the Newton's second Law of motion. In mathematical terms, ֿF = d ֿp/dt, that is F= ma.
- According to the Law of conservation of Momentum, or a collision occurring between object 1 and object 2 in an isolated system, the total momentum of the two objects before the collision is equal to the total momentum of the two objects after the collision.
Mass movement is the movement of surface materials caused by gravity. A great example would be a mud slide.
The answer is 3
I hope I helped
Answer:
4m/s
Explanation:
due to newtons second law of motion
the accelerations that result when a 12-N net force is applied to a 3-kg object. A 3-kg object experiences an acceleration of 4 m/s/s.
HOPE THIS HELPS PLEASE MARK AS BRAINLIEST:)
Answer:
The concentration of OH⁻ in the mixture is 0.05 M
Explanation:
The reaction of neutralization between HCl and NaOH is the following:
H⁺(aq) + OH⁻(aq) ⇄ H₂O(l)
The number of moles of HCl is:

Similarly, the number of moles of NaOH is:

Now, from the reaction of HCl and NaOH we have the following number of moles of NaOH remaining:

Finally, the concentration of OH⁻ in the mixture is:
Therefore, the concentration of OH⁻ in the mixture is 0.05 M.
I hope it helps you!