1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maksim [4K]
3 years ago
15

Robert had two of rope he cut off eight inches how many inches does he have left

Mathematics
2 answers:
pishuonlain [190]3 years ago
5 0
16 inches. 24 - 8 = 16.
melomori [17]3 years ago
5 0
Its 24inches(2 feet) subtract 8inches which would equal 16inches
You might be interested in
the height h(t) of a trianle is increasing at 2.5 cm/min, while it's area A(t) is also increasing at 4.7 cm2/min. at what rate i
nekit [7.7K]

Answer:

The base of the triangle decreases at a rate of 2.262 centimeters per minute.

Step-by-step explanation:

From Geometry we understand that area of triangle is determined by the following expression:

A = \frac{1}{2}\cdot b\cdot h (Eq. 1)

Where:

A - Area of the triangle, measured in square centimeters.

b - Base of the triangle, measured in centimeters.

h - Height of the triangle, measured in centimeters.

By Differential Calculus we deduce an expression for the rate of change of the area in time:

\frac{dA}{dt} = \frac{1}{2}\cdot \frac{db}{dt}\cdot h + \frac{1}{2}\cdot b \cdot \frac{dh}{dt} (Eq. 2)

Where:

\frac{dA}{dt} - Rate of change of area in time, measured in square centimeters per minute.

\frac{db}{dt} - Rate of change of base in time, measured in centimeters per minute.

\frac{dh}{dt} - Rate of change of height in time, measured in centimeters per minute.

Now we clear the rate of change of base in time within (Eq, 2):

\frac{1}{2}\cdot\frac{db}{dt}\cdot h =  \frac{dA}{dt}-\frac{1}{2}\cdot b\cdot \frac{dh}{dt}

\frac{db}{dt} = \frac{2}{h}\cdot \frac{dA}{dt} -\frac{b}{h}\cdot \frac{dh}{dt} (Eq. 3)

The base of the triangle can be found clearing respective variable within (Eq. 1):

b = \frac{2\cdot A}{h}

If we know that A = 130\,cm^{2}, h = 15\,cm, \frac{dh}{dt} = 2.5\,\frac{cm}{min} and \frac{dA}{dt} = 4.7\,\frac{cm^{2}}{min}, the rate of change of the base of the triangle in time is:

b = \frac{2\cdot (130\,cm^{2})}{15\,cm}

b = 17.333\,cm

\frac{db}{dt} = \left(\frac{2}{15\,cm}\right)\cdot \left(4.7\,\frac{cm^{2}}{min} \right) -\left(\frac{17.333\,cm}{15\,cm} \right)\cdot \left(2.5\,\frac{cm}{min} \right)

\frac{db}{dt} = -2.262\,\frac{cm}{min}

The base of the triangle decreases at a rate of 2.262 centimeters per minute.

6 0
3 years ago
Maurice and Johanna have appreciated the help you have provided them and their company Pythgo-grass. They have decided to let yo
jasenka [17]
<span><span>1.A triangular section of a lawn will be converted to river rock instead of grass. Maurice insists that the only way to find a missing side length is to use the Law of Cosines. Johanna exclaims that only the Law of Sines will be useful. Describe a scenario where Maurice is correct, a scenario where Johanna is correct, and a scenario where both laws are able to be used. Use complete sentences and example measurements when necessary.
</span>
The Law of Cosines is always preferable when there's a choice.  There will be two triangle angles (between 0 and 180 degrees) that share the same sine (supplementary angles) but the value of the cosine uniquely determines a triangle angle.

To find a missing side, we use the Law of Cosines when we know two sides and their included angle.   We use the Law of Sines when we know another side and all the triangle angles.  (We only need to know two of three to know all three, because they add to 180.  There are only two degrees of freedom, to answer a different question I just did.

<span>2.An archway will be constructed over a walkway. A piece of wood will need to be curved to match a parabola. Explain to Maurice how to find the equation of the parabola given the focal point and the directrix.
</span>
We'll use the standard parabola, oriented in the usual way.  In that case the directrix is a line y=k and the focus is a point (p,q).

The points (x,y) on the parabola are equidistant from the line to the point.  Since the distances are equal so are the squared distances.

The squared distance from (x,y) to the line y=k is </span>(y-k)^2
<span>
The squared distance from (x,y) to (p,q) is </span>(x-p)^2+(y-q)^2.<span>
These are equal in a parabola:

</span>
(y-k)^2 =(x-p)^2+(y-q)^2<span>

</span>y^2-2ky + k^2 =(x-p)^2+y^2-2qy + q^2

y^2-2ky + k^2 =(x-p)^2 + y^2 - 2qy+ q^2

2(q-k)y =(x-p)^2+ q^2-k^2

y = \dfrac{1}{2(q-k)} ( (x-p)^2+ q^2-k^2)

Gotta go; more later if I can.

<span>3.There are two fruit trees located at (3,0) and (−3, 0) in the backyard plan. Maurice wants to use these two fruit trees as the focal points for an elliptical flowerbed. Johanna wants to use these two fruit trees as the focal points for some hyperbolic flowerbeds. Create the location of two vertices on the y-axis. Show your work creating the equations for both the horizontal ellipse and the horizontal hyperbola. Include the graph of both equations and the focal points on the same coordinate plane.

4.A pipe needs to run from a water main, tangent to a circular fish pond. On a coordinate plane, construct the circular fishpond, the point to represent the location of the water main connection, and all other pieces needed to construct the tangent pipe. Submit your graph. You may do this by hand, using a compass and straight edge, or by using a graphing software program.

5.Two pillars have been delivered for the support of a shade structure in the backyard. They are both ten feet tall and the cross-sections​ of each pillar have the same area. Explain how you know these pillars have the same volume without knowing whether the pillars are the same shape.</span>
3 0
3 years ago
Hello, help needed. show work please. 55 points!! due today.
MArishka [77]

Answer:

see below

Step-by-step explanation:

           x+5

y = ----------------------

        x^2 - 2x+1

Since the degree of numerator < degree of denominator ( 1 < 2) there is a horizontal  asymptote: y = 0

4 0
3 years ago
The height of a box is 7 the length is three inches more than the width find the volume is 126
babunello [35]

Answer:

<h2>answer c: 10</h2>

Step-by-step explanation:

v=H*W*L

280=7*W*(6+W)

280=42W+7W^2

40=6w+w^2

W^2+6W-40=0

(W-4)(W+10)=0

W=4

We can only use positive results

L=6+W

L=4+6=10

=10

6 0
3 years ago
nyah is making a collage of her friends school pictures on a poster board. each picture is 2 inches by 3 inches and the poster h
Neporo4naja [7]

I'll have the rest is history

5 0
3 years ago
Other questions:
  • How to do this and graph it including graph insects x+2y=1 2x+y=5
    11·1 answer
  • Please help
    15·1 answer
  • Clare has $54 in her bank account. A store credits her account with a $10 refund. How much does she now have in the bank?
    10·1 answer
  • Convert 0.70 hours to minutes round answer to the nearest tenth​
    11·2 answers
  • (4 x 10e5) (2 x 10e3)
    14·1 answer
  • Anybody? I'm pretty sure calculators don't do it right so..please no calculators. ;-;
    10·2 answers
  • 3. If the scale factor in a dilation is a number between 0 and
    9·1 answer
  • Write each fraction in simplest form.<br><br> 12 over 48<br><br> 6 over 15
    5·2 answers
  • An artist designs a rectangular quilt piece with different types of ribbon that go from the corner to the center
    9·1 answer
  • Steve went on holiday.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!