Answer:
Distance in pc= 20parsecs
Distance in zLY= 65.2LY
Distance in AU= 4.1×10^6AU
Explanation:
Using the formular:
d = 1/p
Where d = distance
P= parallax angle in arc of second
d= 1/0.050
d= 20 parsed
Converting to Lighy years,LY :
1 PC = 3.26LY
d= 20pc × (3.26Ly/1pc)
d= 65.2Ly
To convert to AU, 206,265 AU = 1pc
d= 20pc × (2.06×10^5AU/1pc)
d= 4.1×10^6AU
When object reached the terminal speed then its acceleration is zero
So as per Newton's II law we can say

now in that case we can say that net force is zero so here weight of the object is counter balanced by the drag force when it will reach at terminal speed
so we can write

so here we are given that





so terminal speed will be nearly 2 m/s
Answer:
15.8 m/s
Explanation:
The following data were obtained from the question:
Initial velocity (u) = 32 m/s.
Acceleration (a) = – 1.5 m/s²
Time (t) = 10.8 s.
Final velocity (v) =?
Acceleration is simply defined as the rate of change of velocity with time. Mathematically, it is expressed as:
Acceleration (a) = [final velocity (v) – initial velocity (u)] / time (t)
a = (v – u) /t
With the above formula, we can obtain the final velocity of go-cart driver as follow:
Initial velocity (u) = 32 m/s.
Acceleration (a) = – 1.5 m/s²
Time (t) = 10.8 s.
Final velocity (v) =?
a = (v – u) /t
– 1.5 = (v – 32) / 10.8
Cross multiply
(v – 32) = –1.5 × 10.8
v – 32 = – 16.2
Collect like terms
v = – 16.2 + 32
v = 15.8 m/s
Therefore, the final velocity of go-cart driver is 15.8 m/s.
Where is the cube I don't see any picture?
Answer:
The charged particle will follow a circular path.
Explanation:
The magnetic force exerted on the charged particle due to the magnetic field is given by:

where
q is the charge
v is the velocity of the particle
B is the magnetic field
is the angle between v and B
In this problem, the velocity is perpendicular to the magnetic field, so
and the force is simply

Moreover, the force is perpendicular to both B and v, according to the right-hand rule. Therefore, we have:
- a force that is always perpendicular to the velocity, v
- a force which is constant in magnitude (because the magnitude of v or B does not change)
--> this means that the force acts as a centripetal force, so it will keep the charged particle in a uniform circular motion. So, the correct answer is
The charged particle will follow a circular path.