1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mr_godi [17]
3 years ago
14

A proton is projected toward a fixed nucleus of charge Ze with velocity vo. Initially the two particles are very far apart. When

the proton is a distance R from the nucleus its velocity has decreased to 1/2vo. How far from the nucleus will the proton be when its velocity has dropped to 1/4vo
Physics
1 answer:
11111nata11111 [884]3 years ago
7 0

Answer:

The value is R_f =  \frac{4}{5}  R

Explanation:

From the question we are told that

   The  initial velocity of the  proton is v_o

    At a distance R from the nucleus the velocity is  v_1 =  \frac{1}{2}  v_o

    The  velocity considered is  v_2 =  \frac{1}{4}  v_o

Generally considering from initial position to a position of  distance R  from the nucleus

 Generally from the law of energy conservation we have that  

       \Delta  K  =  \Delta P

Here \Delta K is the change in kinetic energy from initial position to a  position of  distance R  from the nucleus , this is mathematically represented as

      \Delta K  =  K__{R}} -  K_i

=>    \Delta K  =  \frac{1}{2}  *  m  *  v_1^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K  =  \frac{1}{2}  *  m  * (\frac{1}{2} * v_o )^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K  =  \frac{1}{2}  *  m  * \frac{1}{4} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2

And  \Delta  P is the change in electric potential energy  from initial position to a  position of  distance R  from the nucleus , this is mathematically represented as

          \Delta P =  P_f - P_i

Here  P_i is zero because the electric potential energy at the initial stage is  zero  so

             \Delta P =  k  *  \frac{q_1 * q_2 }{R}  - 0

So

           \frac{1}{2}  *  m  * \frac{1}{4} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2 =   k  *  \frac{q_1 * q_2 }{R}  - 0

=>        \frac{1}{2}  *  m  *v_0^2 [ \frac{1}{4} -1 ]  =   k  *  \frac{q_1 * q_2 }{R}

=>        - \frac{3}{8}  *  m  *v_0^2  =   k  *  \frac{q_1 * q_2 }{R} ---(1 )

Generally considering from initial position to a position of  distance R_f  from the nucleus

Here R_f represented the distance of the proton from the nucleus where the velocity is  \frac{1}{4} v_o

     Generally from the law of energy conservation we have that  

       \Delta  K_f  =  \Delta P_f

Here \Delta K is the change in kinetic energy from initial position to a  position of  distance R  from the nucleus  , this is mathematically represented as

      \Delta K_f   =  K_f -  K_i

=>    \Delta K_f  =  \frac{1}{2}  *  m  *  v_2^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K_f  =  \frac{1}{2}  *  m  * (\frac{1}{4} * v_o )^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K_f  =  \frac{1}{2}  *  m  * \frac{1}{16} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2

And  \Delta  P is the change in electric potential energy  from initial position to a  position of  distance R_f  from the nucleus , this is mathematically represented as

          \Delta P_f  =  P_f - P_i

Here  P_i is zero because the electric potential energy at the initial stage is  zero  so

             \Delta P_f  =  k  *  \frac{q_1 * q_2 }{R_f }  - 0      

So

          \frac{1}{2}  *  m  * \frac{1}{8} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2 =   k  *  \frac{q_1 * q_2 }{R_f }

=>        \frac{1}{2}  *  m  *v_o^2 [-\frac{15}{16} ]  =   k  *  \frac{q_1 * q_2 }{R_f }

=>        - \frac{15}{32}  *  m  *v_o^2 =   k  *  \frac{q_1 * q_2 }{R_f } ---(2)

Divide equation 2  by equation 1

              \frac{- \frac{15}{32}  *  m  *v_o^2 }{- \frac{3}{8}  *  m  *v_0^2  } }   =  \frac{k  *  \frac{q_1 * q_2 }{R_f } }{k  *  \frac{q_1 * q_2 }{R } }}

=>           -\frac{15}{32 } *  -\frac{8}{3}   =  \frac{R}{R_f}

=>           \frac{5}{4}  =  \frac{R}{R_f}

=>             R_f =  \frac{4}{5}  R

   

You might be interested in
प्रकाशको आवर्तनको परिभाषा लेख्नुहोस् । कन्भेक्स ऐनाको अगाडि तपाई उभियौ भने तपाईको कस्तो आकृति बन्छ, लेख्नर
allochka39001 [22]
A diagram alright of the
4 0
2 years ago
The speed of sound at room temperature (20 degrees Celsius) is 343 m/s. If the speed of sound in air increases about 0.60 m/s fo
stepan [7]

Answer:

36,67 degrees Celsius

Explanation:

The simplest way to approach this problem, given the information provided, is to simply start with the speed difference.

Goal: 353 m/s

Start: 343 m/s (at 20 degrees Celsius).

Difference: 10 m/s

Variation rate: 0.60 m/s/d (d = degree)

d = \frac{10 m/s}{0.60 m/s/d}  = 16,67 d

So, 16,67 degrees more than the starting point.

The temperature will then be 36.67 degrees Celsius, when the sound travels at the speed of 353 m/s.

4 0
3 years ago
Which statement(s) accurately describe the conditions immediately before and after the firecracker explodes:
lidiya [134]

Answer:

Option C, The total momentum of the fragments is equal to the original momentum of the firecracker.

Explanation:

Kinetic energy of cracker cannot remain constant before and after explosion. It is so because in the process of burning and bursting some amount of kinetic energy is lost in the form of light and heat energy. While the total mass before and after the explosion remains constant due to which the momentum is conserved before and after the explosion

Hence, option C is correct

8 0
3 years ago
How much energy in Joules (J) would an electric heater that draws 9.5 A when connected to a 120 V supply use if the heater were
leonid [27]
<h2>Energy used by heater is 8.21 x 10⁶ J</h2>

Explanation:

Energy = Power x Time

Power = Voltage x Current

Voltage = 120 V

Current = 9.5 A

Power = Voltage x Current

Power = 120 x 9.5 = 1140 W

Time = 2 hours = 2 x 60 x 60 = 7200 s

Energy = Power x Time

Energy = 1140 x 7200

Energy = 8208000 J

Energy used by heater is 8.21 x 10⁶ J

7 0
3 years ago
When only several competitors in an industry maintain most of the sales of those items, it is considered a(n) Industry of Social
Alexeev081 [22]

Answer:

Oligopoly

Explanation:

An oligopoly is the structure of the market that is characterized by the domination of a few firms or industries. Other small firms also operate in the same market, but the power concentration is associated with few firms only. Interdependency among the firms helps in planning and strategy making to introduce new ideas to increase the market activities. The competition in the market is reduced when a few of the firms dominate the market. It results in an increase in the price of commodities.

8 0
3 years ago
Other questions:
  • What makes silver and gold different by using the terms atom and element
    8·1 answer
  • Cecily is inflating one of her bicycle tyres with the pump below. When she pushes the plunger down, does the volume of the gas i
    14·1 answer
  • Which of the following statements are true about metallic bonds? A. Metallic bonds hold together atoms with somewhat similar ele
    15·1 answer
  • Can anyone pls help me out in dis i am struggling in dis!
    6·1 answer
  • The electromagnetic wave that CT scans are based on is called
    9·2 answers
  • I NEED THE ANSWER QUICK PLEASEE
    10·1 answer
  • After completing an experiment, all chemical wastes should be
    11·1 answer
  • You are at a circus and you see a stunt man climb up 29.4 meters into a cannon. He gets fired horizontally out of the cannon wit
    14·1 answer
  • Physics help me pleaseee
    8·1 answer
  • Edwin Hubble discovered that:
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!