Answer:
F = 800 [N]
Explanation:
To be able to calculate this problem we must use the principle of momentum before and after the impact of the hammer.
We must summarize that after the impact the hammer does not move, therefore its speed is zero. In this way, we can propose the following equation.
ΣPbefore = ΣPafter

where:
m₁ = mass of the hammer = 0.15 [m/s]
v₁ = velocity of the hammer = 8 [m/s]
F = force [N] (units of Newtons)
t = time = 0.0015 [s]
v₂ = velocity of the hammer after the impact = 0
![(0.15*8)-(F*0.0015) = (0.15*0)\\F*0.0015 = 0.15*8\\F = 1.2/(0.0015)\\F = 800 [N]](https://tex.z-dn.net/?f=%280.15%2A8%29-%28F%2A0.0015%29%20%3D%20%280.15%2A0%29%5C%5CF%2A0.0015%20%3D%200.15%2A8%5C%5CF%20%3D%201.2%2F%280.0015%29%5C%5CF%20%3D%20800%20%5BN%5D)
Note: The force is taken as negative since it is exerted by the nail on the hammer and this force is directed in the opposite direction to the movement of the hammer.
Which of the following pairings are more likely to be held together with the strong nuclear force
Explanation:
1.What does a strong nuclear force do in an atom? It repels electrons from other electrons. It repels protons from other protons. It attracts protons and neutrons.
2.The chain reaction requires both the release of neutrons from fissile isotopes undergoing nuclear fission and the subsequent absorption of some of these neutrons in fissile isotopes.
3.The strong nuclear force holds most ordinary matter together because it confines quarks into hadron particles such as the proton and neutron. In addition, the strong force binds these neutrons and protons to create atomic nuclei.
An electric current is said to exist when there is a net flow of electric charge through a region. In electric circuits this charge is often carried by electrons moving through a wire. It can also be carried by ions in an electrolyte, or by both ions and electrons such as in an ionized gas (plasma).
Answer:
E = 1/2 M V^2 + 1/2 I ω^2 = 1/2 M V^2 + 1/2 I V^2 / R^2
E = 1/2 M V^2 (1 + I / (M R^2))
For a cylinder I = M R^2
For a sphere I = 2/3 M R^2
E(cylinder) = 1 + 1 = 2 omitting the 1/2 M V^2
E(sphere) = 1 + 2/3 = 1.67
E(cylinder) / E(sphere) = 2 / 1.67 = 1.2
The cylinder initially has 1.20 the energy of the sphere
The PE attained is proportional to the initial KE
H(sphere) = 2.87 / 1/2 = 2.40 m since it has less initial KE
Answer:
F = 683.8 N
Explanation:
The gravitational force of attraction between the Earth and the student is given by Newton's Law of Gravitation as follows:

where,
F = Force = ?
G = Universal gravitational constant = 6.67 x 10⁻¹¹ Nm²/kg²
m₁ = mass of Earth = 5.98 x 10²⁴ kg
m₂ = mass of student = 70 kg
r = distance between Earth and student = 6.39 x 10⁶ m
Therefore,

<u>F = 683.8 N</u>