Answer:
The slope of the position time graph gives the velocity.
Explanation:
The slope of the position time graph gives the value of velocity.
In first graph,
The slope is constant in both the parts but positive . So the velocity is also constant and positive for both the parts. and more than the second part, so the initial velocity is more than the final velocity.
In the second graph,
The slope is constant in both the parts but negative. So, the velocity is constant but negative for both the parts. Initial velocity is more negative than the final velocity.
The point with the greatest potential energy is B.
The potential energy of an object is depends on the relative distance between the object and the ground and its mass. The higher the object is from the ground the greater the potential energy posses.
Potential energy (P.E) = mgh
Where m is the mass, g is the gravity and h is the height from the ground to where the object is.
Since the mass and gravity is constant in this case, only the height will determine the point with the greatest P.E and that point is B.
Answer:
When the platform rotates, the rotating mass will travel in a circular path due to the force exerted on it by the string (by way of the tension in the spring). Since it is not possible to have an instantaneous readout of this tension force while the platform is rotating, an indirect measurement of this force will be made using the weight of the static mass as shown and explained below.
52m/s is the answer because before it was gonna accelerate it was 52 m/s
Since the acceleration is uniform, we can calculate it from the data we are given:
a = (vf - vi)/2
where vf=33 m/s and vi=11 m/s
Then use Suvat's equation:
x(t) = vi*t + 0.5 * a * t
where t=20s