Answer: Option (b) is the correct answer.
Explanation:
It is given that a positive test charge q is released from rest at a distance r away from a charge of +Q and a distance 2r which is away from a charge of +2Q.
Then test charge to the right immediately after being released.
Therefore, the net force will be as follows.
F = 
= 
= 
F =
> 0
Thus, we can conclude that the test charge move to the right immediately after being released.
Explanation:
It is known that wave intensity is the power to area ratio.
Mathematically, I = 
As it is given that power is 28.0 W and area is
.
Therefore, sound intensity will be calculated as follows.
I = 
= 
= 
or, = 
Thus, we can conclude that sound intensity at the position of the microphone is
.
Answer:
A) Earth and the other inner planets have higher average surface temperatures than the outer planets.
Explanation:
the earth and the other inner planets have higher average surface temperatures than the outer planets.
The reason for this response is due to the distance between the sun and the respective planet, the source of energy generation is the sun and the only way in which the temperature increase of each planet is guaranteed is by radiation, the further away a planet is from its star, its temperature will decrease. Although it is also important to highlight the atmospheric composition of the planet if this planet in its stratosphere has high density clouds that do not allow the entry of solar radiation, the temperature of the planet's surface will not increase, independent of the distance from the sun, but these are more complex cases where specialists in that area enter to perform a study in detail.
Answer:
Disruption to electricity power grid
Explanation:
We're looking a a solar flare. This will whip solar particles at high velocity into space and, If they are near earth, will interact with the earth's magnetic field. These magnetic changes will be measurable in the electric grid. Whether they are strong enough to cause "disruption" depends on a huge number of factors such as strength of and angles of the interacting magnetic fields and location of grid infrastructure,
The answer is A: can change