Answer : The kinetic energy depends directly on the mass of a particle.
Explanation :
We know that the kinetic energy of any particle is given by :

Where,
m is the mass of an object.
v is the velocity with which it is moving
Kinetic energy is due to the motion of the particle.
So, the kinetic energy of a particle is directly proportional to its mass.
Hence, the conclusion of the question is if the mass of a particle is increases then its kinetic energy also increase.
If Ross takes two months off from training, his fitness level will reduce in comparison to what it was two months ago.
- In as little as 3–4 weeks after beginning strength training, Ross will probably experience weight increase, energy loss, diminished balance, diminished strength (making it tougher to carry out daily tasks), and overall fewer fitness levels.
- Many people mistakenly believe they lose muscle mass far more quickly than they actually do because their muscles' ability to store water and glycogen is declining.
- A decrease in strength and muscle mass, with beginners experiencing a smaller decline in strength than experienced lifters.
- Ross will experience Increased VO2 Max from exercise. VO2 Max is almost completely lost in people who train at lower intensities.
learn more about fitness here: brainly.com/question/13490156
#SPJ10
The answer for the following answer is answered below.
- <u><em>Therefore the time period of the wave is 0.01 seconds.</em></u>
- <u><em>Therefore the option for the answer is "B".</em></u>
Explanation:
Frequency (f):
The number of waves that pass a fixed place in a given amount of time.
The SI unit of frequency is Hertz (Hz)
Time period (T):
The time taken for one complete cycle of vibration to pass a given point.
The SI unit of time period is seconds (s)
Given:
frequency (f) = 100 Hz
wavelength (λ) = 2.0 m
To calculate:
Time period (T)
We know;
According to the formula;
<u>f =</u>
<u></u>
Where,
f represents the frequency
T represents the time period
from the formula;
T = 
T = 
T = 0.01 seconds
<u><em>Therefore the time period of the wave is 0.01 seconds.</em></u>