Answer:
Change in momentum will be -4.4 kgm/sec
So option (A) is correct option
Explanation:
Mass of the ball is given m = 0.10 kg
Initial velocity of ball 
And velocity after rebound 
We have to find the change in momentum
So change in momentum is equal to
( here negative sign shows only direction )
So option (A) will be correct answer
Answer:

Explanation:
From the question we are told that:
Initial Speed 
Time 
Angle
Generally the Newton's equation for motion is mathematically given by



Answer: Due that we don't know the initial speed after hitting the ball, we are going to accept that the ball goes up for half of the time and then falls during other half part, that is 3.0 seconds each. Then we know that ball's movement is ruled by the acceleration of gravity formula, as follows: H = Vi * T + 1/2 * g * T^2 V = Vi + g * T where: H is height, Vi initial speed, g gravity acceleration and T time When we only consider the second half of the trajectory, we have that initial speed at the top of that movement is zero, because ball goes up till top, where stops and starts to go down, so : H = 0 * 3 + 1/2 * 32 * 3^2 = 144 ft. So the height of the pop-up is 144 feet.
I used rise and run to see where point a lies .
That's kind of an answer you could you right?
Answer:
The electric potential (voltage)
produced by a point charge
, at any point in space, is given by the following equation:
Where:
is the Coulomb's constant
is the distance
The result is a scalar quantity, is defined as the electric potential energy per unit of charge and determines the electric influence exerted by the charge on that point of space.