1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
viktelen [127]
3 years ago
10

A thin rod (length = 2.97 m) is oriented vertically, with its bottom end attached to the floor by means of a frictionless hinge.

The mass of the rod may be ignored, compared to the mass of the object fixed to the top of the rod. The rod, starting from rest, tips over and rotates downward. (a) What is the angular speed of the rod just before it strikes the floor? (Hint: Consider using the principle of conservation of mechanical energy.)(b) What is the magnitude of the angular acceleration of the rod just before it strikes the floor?
Physics
1 answer:
nlexa [21]3 years ago
3 0

Answer:

a)  w = 2.57 rad / s , b)   α = 3.3 rad / s²

Explanation:

a) Let's use the conservation of mechanical energy, we will write it in two points the highest and when touching the ground

Initial. Higher

       Em₀ = U = m g h

Final. Touching the ground

       Em_{f} = K = ½ I w²

How energy is conserved

       Em₀ = Em_{f}

       mg h = ½ I w2

The moment of specific object inertia

        I = m L²

We replace

       m g h = ½ (mL²) w²

       w² = 2g h / L²

The height of the object is the length of the bar

        h = L

        w = √ 2g / L

       w = √ (2 9.8 / 2.97)

       w = 2.57 rad / s

b) the angular acceleration can be found from Newton's second rotational law

       τ = I α

       W L = I α

       mg L = (m L²) α

       α = g / L

       α = 9.8 / 2.97

       α = 3.3 rad / s²

You might be interested in
A scientist observes an increase in the rate at which water moves from the hydrosphere to the atmosphere at a particular locatio
Musya8 [376]
At a particular location, when an an increase in the rate at which water moves from the hydrosphere to the atmosphere, an increase in humidity is expected at that location. The term "humidity" generally refers to the amount of water vapor in the atmosphere.
7 0
3 years ago
A physics major is working to pay her college tuition by performing in a traveling carnival. She rides a motorcycle inside a hol
il63 [147K]

Answer:

v = 12.1 m/s

Explanation:

  • When at the top of the circle, there are two forces acting on the combined mass of the rider and the motorcycle.
  • These are the force of gravity (downward) and the normal force, which is directed from the surface away from it, perpendicular to the surface.
  • In this case, as the motorcycle runs in the interior of the circle, at the top point this force is completely vertical, and is also downward.
  • Since the motorcycle is moving in a vertical circle, there must be a force, keeping the object moving around a circle.
  • This force is the centripetal force, aims towards the center of the circle, and is just the net force aiming in this direction at any point.
  • At the top point, this force is just the sum of the normal force and the weight of the mass of the rider and the motorcycle combined, as follows (we take the direction towards the center as positive):

       F_{c} = N + m*g (1)

  • Now, we know that the centripetal force is related with the tangential speed at this point and the radius of the circle as follows:

       F_{c} = m*\frac{v^{2}}{r} (2)

  • Since the normal force takes any value as needed to make (1) equal to (2),  if the speed diminishes, it will be needed less force to keep the equality valid.
  • In the limit, when the motorcyvle tires barely touch the surface, this normal force becomes zero.
  • In this condition, from (1) and (2), we can find the minimum possible value of  the speed that still keeps the motorcycle touching the surface, as follows:
  • v_{min} =\sqrt{r*g} =\sqrt{15.0m*9.8m/s2} = 12.1 m/s (3)
6 0
3 years ago
Madison was driving at 40 mph and went 80 miles. How long did it take madison?
monitta
v=40\ mph\\\\s=80\ miles\\\\t=?\\--------------\\v=\frac{s}{t}\to vt=s\to t=\frac{s}{v}\\--------------\\t=\frac{80\ miles}{40\ mph}=2\ h\leftarrow Answer
3 0
3 years ago
Read 2 more answers
Which statements correctly describe matter? Select all that apply.
strojnjashka [21]

Answer:

D

I hope these is correct

3 0
3 years ago
2 difference between calorimetry and calorimeter ​
garik1379 [7]

Calorimetry :

<em><u>the process of measuring the amount of heat released or absorbed during a chemical reaction</u></em>.

Calorimeter :

<em><u>device for measuring the heat developed during a mechanical, electrical, or chemical reaction, and for calculating the heat capacity of materials</u></em>.

8 0
2 years ago
Other questions:
  • What is the acceleration, in meters per second squared, of a 2,000,000-kilogram NASA rocket with an applied force of 20,000,000
    7·1 answer
  • A small rubber wheel drives the rotation of a larger pottery wheel by running along its edge. The small wheel radius is 1.2 cm,
    7·1 answer
  • A small submarine has a volume of 30 m3 and has a mass of 40,000 kg. It needs external tanks that can be filled with air for buo
    13·1 answer
  • What types of rock make up the oceanic crust and how do they form?
    8·1 answer
  • Early in the twentieth century, a group of German psychologists noticed that people tend to organize a cluster of sensations int
    13·1 answer
  • A vertical scale on a spring balance reads from 0 to 200 \rm{N}. The scale has a length of 10.0 \rm{cm} from the 0 to 200 \rm{N}
    10·1 answer
  • For this problem, you will only be concerned with the geometric aspects of thin-film interference, so ignore phase shifts caused
    13·1 answer
  • Suppose a large housefly 3.0 m away from you makes sound with an intensity level of 40.0 dB. What would be the sound intensity l
    11·1 answer
  • A child sits on a rotating merry-go-round, 2.1 m from its center. If the speed of the child is 2.2 m/s, what is the minimum coef
    11·1 answer
  • How does water form in the clouds? Explain how
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!