Answer: The amplitude is 0. (assuming that the amplitude ot both initial waves is the same)
Explanation:
When two monochromatic light waves of the same wavelength and same amplitude undergo destructive interference, means that the peak of one of the waves coincides with the trough of the other, so the waves "cancel" each other in that point in space.
Then if two light waves undergo destructive interference, the amplitude of the resultant wave in that particular point is 0.
As per the question Bob drops the bag full with feathers from the top of the building.
The mass of the bag(m)= 1.0 lb
Let the air resistance is neglected.As the bag is under free fall ,hence the only force that acts on the bag is the force of gravity which is in vertical downward direction.
Here the acceleration produced on bag due to the free fall will be nothing else except the acceleration due to gravity i.e g =9.8 m/s^2
Here we are asked to calculate the distance travelled by the bag at the instant 1.5 s
Hence time t= 1.5 s
From equation of kinematics we know that -
S=ut + 0.5at^2 [ here S is the distance travelled]
For motion under free fall initial velocity (u)=0.
Hence S= 0×1.5+{0.5×(-9.8)×(1.5)^2}
⇒ -S =0-11.025 m
⇒ S= 11.025 m
=11 m
Here the negative sign is taken only due to the vertical downward motion of the body .we may take is positive depending on our frame of reference .
Hence the correct option is B.
Ionization energy, according to <span>chem.libretexts.org,</span><span> is the quantity of </span>energy<span> that an isolated, gaseous atom in the ground electronic state must absorb to discharge an electron, resulting in a cation. This </span>energy<span> is usually expressed in kJ/mol, or the amount of </span>energy<span> it takes for all the atoms in a mole to lose one electron each.</span>
B .Newton's first law holds that your body moves along with Earth because it is not compelled to change its motion by an unbalanced force
I found: 16,905J
Explanation:
The Gravitational Potential Energy will depend on the work done against gravity (weight,
W=mg) to lift it at height h or:
U = mgh =750 * 9.8 *2.3 =16,905J