Answer:
The answer is
<h2>3.54 mL</h2>
Explanation:
The volume of a substance when given the density and mass can be found by using the formula

From the question
mass = 9.38 g
density = 2.65 g/cm³
The volume of the quartz is

We have the final answer as
<h3>3.54 mL</h3>
Hope this helps you
Assuming that nitrogen gas is ideal, we can use the equation PV = nRT to relate first conditions to the second condition. At constant temperature, pressure and volume are indirectly related as follows:
P = k / V
k is equal nRT
P1V1 = P2V2
P2 = 101.325 ( 4.65 ) / .480 = 981.586 kPa
Answer : The activation energy for the reaction is, 119.7 J
Explanation :
According to the Arrhenius equation,

or,
![\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BK_2%7D%7BK_1%7D%29%3D%5Cfrac%7BEa%7D%7B2.303%5Ctimes%20R%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= rate constant at 271 K
= rate constant at 281 K = 
= activation energy for the reaction = ?
R = gas constant = 8.314 J/mole.K
= initial temperature = 271 K
= final temperature = 281 K
Now put all the given values in this formula, we get:
![\log (\frac{2K_1}{K_1})=\frac{Ea}{2.303\times 8.314J/mole.K}[\frac{1}{271K}-\frac{1}{281K}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7B2K_1%7D%7BK_1%7D%29%3D%5Cfrac%7BEa%7D%7B2.303%5Ctimes%208.314J%2Fmole.K%7D%5B%5Cfrac%7B1%7D%7B271K%7D-%5Cfrac%7B1%7D%7B281K%7D%5D)

Therefore, the activation energy for the reaction is, 119.7 J
Answer:
I am pretty sure Danny Duncan told me 69
Explanation:
niice