Answer:
See below
Step-by-step explanation:
heat gained by metal + heat lost by water = 0
m₁C₁ΔT₁ + m₂C₂ΔT₂ = 0
C₁ = -(m₂C₂ΔT₂)/(m₁ΔT₁)
The factors determining C₁ are
- mass of water
- temperature change of water (T_f - Ti)
- mass of metal
- temperature change of metal (T_f - Ti)
Any factor that makes the numerator higher or the denominator lower than what you thought, will give a calculated C₁ that is too high (and vice versa).
The major sources of uncertainty are probably in determining the temperatures, especially the initial and final temperatures of the metal. However, you will have to decide what the principal factors were in your experiment.
For example, did the metal have a chance to cool during the transfer to the calorimeter? How easy was it to determine the equilibrium temperature, etc?
Factors Affecting the Calculation of Specific Heat Capacity
<u> Too Low </u> <u> Too high </u>
Water Water
Mass less than thought Mass more than thought
Ti lower Ti higher
T_f higher T_f lower
Metal Metal
Mass more than thought Mass less than thought
Ti higher Ti lower
Explanation:
Magnesium chloride = MgCl₂
aluminum nitrate= Al(NO₃)₃
ammonium sulfate=( NH₄)₂SO₄
Answer:
this atom has nine electrons
Answer: -
15.55 M
35.325 molal
Explanation: -
Let the volume of the solution be 1000 mL.
Density of nitric acid = 1.42 g/ mL
Total Mass of nitric acid Solution = Volume of nitric acid x Density of nitric acid
= 1000 mL x 1.42 g/ mL
= 1420 g.
Percentage of HNO₃ = 69%
Amount of HNO₃ = 
= 979.8 g
Molar mass of HNO₃ = 1 x 1 + 14 x 1 + 16 x 3 = 63 g /mol
Number of moles of HNO₃ = 
= 15.55 mol
Molarity is defined as number of moles per 1000 mL
We had taken 1000 mL as volume and found it to contain 15.55 moles.
Molarity of HNO₃ = 15.55 M
Mass of water = Total mass of nitric acid solution - mass of nitric acid
= 1420 - 979.8
= 440.2 g
So we see that 440.2 g of water contains 15.55 moles of HNO₃
Molality is defined as number of moles of HNO₃ present per 1000 g of water.
Molality of HNO₃ = 
= 35.325 molal
Uh i think it is a balance combustion reaction not entirely sure tho