Answer:
Approximately
.
Explanation:
Look up the specific heat of gaseous neon:
.
Calculate the required temperature change:
.
Let
denote the mass of a sample of specific heat
. Energy required to raise the temperature of this sample by
:
.
For the neon gas in this question:
Calculate the energy associated with this temperature change:
.
<u>Answer:</u> The nuclear equations for the given process is written below.
<u>Explanation:</u>
The chemical equation for the bombardment of neutron to U-238 isotope follows:

Beta decay is defined as the process in which neutrons get converted into an electron and a proton. The released electron is known as the beta particle.

The chemical equation for the first beta decay process of
follows:

The chemical equation for the second beta decay process of
follows:

Hence, the nuclear equations for the given process is written above.
Answer:
Pressure, P = 67.57 atm
Explanation:
<u>Given the following data;</u>
- Volume = 0.245 L
- Number of moles = 0.467 moles
- Temperature = 159°C
- Ideal gas constant, R = 0.08206 L·atm/mol·K
<u>Conversion:</u>
We would convert the value of the temperature in Celsius to Kelvin.
T = 273 + °C
T = 273 + 159
T = 432 Kelvin
To find the pressure of the gas, we would use the ideal gas law;
PV = nRT
Where;
- P is the pressure.
- V is the volume.
- n is the number of moles of substance.
- R is the ideal gas constant.
- T is the temperature.
Making P the subject of formula, we have;

Substituting into the formula, we have;


<em>Pressure, P = 67.57 atm</em>
First M stands for Molarity which is (moles of solute) / (Liters of solution). we also know that moles = (mass) / (molar mass). so we can form some equations here. We know:
Molarity (M) = moles (mol) / Liters (L)
moles (mol) = (mass) / (molar mass)
we can substitute the (mass) / (molar mass) for (moles) and get:
M = [(mass) / (molar mass)] / Liters
we can now isolate mass and get
M * Liters * molar mass = mass
now we need to find the molar mass of CaCl2 which is 110.98 g/mol
plug the values in and get
.350M * 6.5L * 110.98 g/mol = mass
mass = 252.4795g however the 6.5L has only 2 sig figs so i would say
mass CaCl2 = 2.5 * 10 ^2 g
Point f because that is when it starts going down