Answer:
w = 60
Step-by-step explanation:
the midsegment SU is half the measure of side RV, then
SU = RV , so
w - 30 = w ( multiply through by 2 to clear the fraction )
2w - 60 = w ( subtract w from both sides )
w - 60 = 0 ( add 60 to both sides )
w = 60
Given that a polynomial function P(x) has rational coefficients.
Two roots are already given which are i and 7+8i,
Now we have to find two additional roots of P(x)=0
Given roots i and 7+8i are complex roots and we know that complex roots always occur in conjugate pairs so that means conjugate of given roots will also be the roots.
conjugate of a+bi is given by a-bi
So using that logic, conjugate of i is i
also conjugate of 7+8i is 7-8i
Hence final answer for the remaining roots are (-i) and (7-8i).
Might have to experiment a bit to choose the right answer.
In A, the first term is 456 and the common difference is 10. Each time we have a new term, the next one is the same except that 10 is added.
Suppose n were 1000. Then we'd have 456 + (1000)(10) = 10456
In B, the first term is 5 and the common ratio is 3. From 5 we get 15 by mult. 5 by 3. Similarly, from 135 we get 405 by mult. 135 by 3. This is a geom. series with first term 5 and common ratio 3. a_n = a_0*(3)^(n-1).
So if n were to reach 1000, the 1000th term would be 5*3^999, which is a very large number, certainly more than the 10456 you'd reach in A, above.
Can you now examine C and D in the same manner, and then choose the greatest final value? Safe to continue using n = 1000.
Q3-Q1=IQR is the formula.