Answer:
2.28% probability that a person selected at random will have an IQ of 110 or greater
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean and standard deviation , the zscore of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:
What is the probability that a person selected at random will have an IQ of 110 or greater?
This is 1 subtracted by the pvalue of Z when X = 110. So
has a pvalue of 0.9772
1 - 0.9772 = 0.0228
2.28% probability that a person selected at random will have an IQ of 110 or greater
If you would like to calculate the arithmetic mean, geometric mean, and harmonic mean from the following averages, you can calculate this using the following steps:
averages: 56.4, 59.8, 55.8
the number of values: 3
arithmetic mean:
(56.4 + 59.8 + 55.8) / 3 = 57.33
geometric mean:
(56.4 * 59.8 * 55.8)^(1/3) = 57.31
harmonic mean:
3 / (1/56.4 + 1/59.8 + 1/55.8) = 57.28
Answer:
x = 0
y = -2
Step-by-step explanation:
-5x + y = -2
x = 0
y = -2
-3x + 6y = -12
x = 0
y = -2
Answer:
The product is 240.
Step-by-step explanation:
The product is always when you multiply numbers together.
Answer:
I can't see the picture
Step-by-step explanation:
I can't see it