<h3>
Answer: -20</h3>
==========================================================
Work Shown:
Let x be the location of E on the number line.
Since C is the midpoint of E and F, this means we can find C's location by adding E and F together and dividing that sum by 2
midpoint = (endpoint1 + endpoint2)/2
C = (E+F)/2
Plug in E = x, C = -8 and F = 4. Then solve for x
C = (E+F)/2
-8 = (x+4)/2
(x+4)/2 = -8
x+4 = 2(-8) .... multiplying both sides by 2
x+4 = -16
x = -16-4 .... subtract 4 from both sides
x = -20
The location of point E on the number line is -20
-------------
As a check, lets add E and F to get E+F = -20+4 = -16
Then cut this in half to get -16/2 = -8, which is the proper location of point C
This confirms our answer.
Answer:
p= 8
Step-by-step explanation:
just collect the like terms together
12+5-9= p
p= 8
Answer:
Sample Response: Perform the transformations from right to left. First, rotate the triangle 90 degrees. Negate the y-coordinate and then switch the coordinates to get (–1, 0). Next, perform the translation up by adding 0 to the x-coordinate and 2 to the y-coordinate to get (–1, 2). Finally, reflect this point over the y-axis by negating the x-coordinate to get (1, 2).
Step-by-step explanation: