You mean what is the slope of a line parallel to the line whose slope is -2?
The answer is -2... the slopes of parallel lines are equal
Answer:
A sample of 997 is needed.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.
In which
z is the z-score that has a p-value of
.
The margin of error is of:

A previous study indicates that the proportion of left-handed golfers is 8%.
This means that 
98% confidence level
So
, z is the value of Z that has a p-value of
, so
.
How large a sample is needed in order to be 98% confident that the sample proportion will not differ from the true proportion by more than 2%?
This is n for which M = 0.02. So






Rounding up:
A sample of 997 is needed.
Answer: The correct option are B, C and D.
Explanation:
The law of sine states that,

Where A, B, C are interior angles of the triangle and a, b, c are sides opposite sides of these angles respectively as shown in below figure. Only AAS or SSA types problems can be solved by using Law of sine.
Since we need the combination of two sides and one angle or two angles and one side.
In option A, the two consecutive angles are known and a side which makes the second angle with base side is known, therefore the first angle is opposite to the given side, so the law of sine can be used for AAS problems.
Therefore, option A is incorrect.
In option B a side is known and two inclined angle on that line are known. But to use Law of sine we want the line and angle which in not inclined on that line, therefore the ASA problem can not be solved by Law of sine and the option B is correct.
In option C two sides and their inclined angle is known. But to use Law of sine we want the side and angle which in not inclined on that line, therefore the SAS problem can not be solved by Law of sine and the option C is correct.
In option D three sides are given but any angle is not given, therefore the SSS problem can not be solved by Law of sine and the option D is correct.
A. solve for 1 variable
let's solve for x in 2nd equation
add 2y to both sides
x=2y+4
sub 2y+4 for x in other equation
3(2y+4)+y=5
6y+12+y=5
7y+12=5
minu12 both sides
7y=-7
divide 7
y=-1
sub back
x=2y+4
x=2(-1)+4
x=-2+4
x=2
(2,-1)
B. eliminate
eliminate y's
multiply first equation by 2 and add to first
6x+2y=10
<u>x-2y=4 +</u>
7x+0y=14
7x=14
divide by 7
x=2
sub back
x-2y=4
2-2y=4
minus 2
-2y=2
divide -2
y=-1
(2,-1)
(2,-1) is answer