Answer:
El área del círculo que se encuentra en el cuadrado es de 78.5cm²
Step-by-step explanation:
Para resolver este ejercicio tenemos que pensar que un cuadrado tiene sus 4 lados iguales, por lo que todos sus lados medirán 10cm.
Ahora nos fijamos que necesitamos saber para calcular el área de un circulo
a = área
r = radio
π = 3.14
a = π * r²
como podemos ver no sabemos el valor del radio
como el circulo toca con los 4 lados del cuadrado sabemos que su radio sera la distancia del centro del cuadrado a cualquiera de los lados.
Entonces tenemos que dividir un lado por 2
10cm/2 = 5cm
El radio del circulo sera 5cm
Ahora que tenemos todos los datos podemos calcular el valor del área
a = 3.14 * (5cm)²
a = 3.14 * 25cm²
a = 78.5cm²
El área del círculo que se encuentra en el cuadrado es de 78.5cm²
Answer: 2x^2-7x-15
Step-by-step explanation:
reorder the terms (x*2+3)*(x-5)
multiply the parentheses
(2x+3)*(x-5)
collect like terms (2x^2-10x+3x-15)
product= 2x^2-7x-15
Answer:
It is 432
Step-by-step explanation:
Answer:

Step-by-step explanation:
Component form of a vector is given by
, where
represents change in x-value and
represents change in y-value. The magnitude of a vector is correlated the Pythagorean Theorem. For vector
, the magnitude is
.
190 degrees counterclockwise from the positive x-axis is 10 degrees below the negative x-axis. We can then draw a right triangle 10 degrees below the horizontal with one leg being
, one leg being
, and the hypotenuse of the triangle being the magnitude of the vector, which is given as 9.
In any right triangle, the sine/sin of an angle is equal to its opposite side divided by the hypotenuse, or longest side, of the triangle.
Therefore, we have:

To find the other leg,
, we can also use basic trigonometry for a right triangle. In right triangles only, the cosine/cos of an angle is equal to its adjacent side divided by the hypotenuse of the triangle. We get:

Verify that
Therefore, the component form of this vector is 
600+30+7 if that is what you meant...