This would be displayed as 11 - 5k
This cannot be solved, however, without knowing the value of k, or at least what the expression is equal to.
Answer:
The value of the expression increases as j decreases
Step-by-step explanation:
Let 

As j decreases, the value of j300 decreases (i.e the farther j300 is from 150). Due to the wider gap between 150 and j300, the value of f(j) increases.
For example:
When j = 1, f(j) = 150 - (300*1) = -150
When j = 0.5, f(j) = 150 - (300*0.5) = 0
When j = 0. f(j) = 150 - (300*0) = 150
It is obvious from the analogy above that the expression 150-j150−j150 increases as j decreases
Answer:
Statements 3, 4 and 5 are true.
Step-by-step explanation:
x^2 - 8x + 4
Using the quadratic formula:
x = [ -(-8) +/- √((-8)^2 - 4*1*4)] / 2
= (8 +/- √(64 - 16)) / 2
= 4 +/- √48 / 2
= 4 +/- 4√3/2
= 4 +/- 2√3.
So the third statement is true.
Converting to vertex form:
x^2 - 8x + 4
= (x - 4)^2 - 16 + 4
= (x - 4)^2 -12
So the extreme value is at (4, -12)
So the fourth statement is true.
The coefficient of the term in x^2 is 1 (positive) so the graph has a minimum.
48 ten units and 1 five unit.
Answer:
The answer is 3x^2-x-6. Hope it helps you ❤️