Answer:
Explanation:
A point charge of +2q centered in a conductive spherical shell of inner diameter a and outer diameter b will induce - 2q charge on the inner surface and +2q charge on the outer surface of the shell. Since 8q charge has been added to the shell , this charge will reside on the outer surface of the shell. so total charge on the outer surface will be 10q. At a point less than a , the electric field will be due to +2q charge situated at the centre . The electric field will be as follows
E = k .2q / r² for r < a
= 8kq/ a²
electric field at a point r = a>b
total charge lying inside is +2q - 2q = 0 . So in the thickness of the shell , electric field will be zero as total charge inside is nil.
For a point at r > b total charge inside is 2q-2q+10q = 10q , so electric field at r which is lying outside the shell .
E = k 10 q / r² for r > b
A. Controlled experiment hope this helps
<h3><u>Answer</u>;</h3>
1600 years
<h3><u>Explanation</u>;</h3>
- Half life is the time taken for a radioactive isotope to decay by half of its original amount.
- We can use the formula; N = O × (1/2)^n ; where N is the new mass, O is the original amount and n is the number of half lives.
- A sample of radium-226 takes 3200 years to decay to 1/4 of its original amount.
Therefore;
<em>1/4 = 1 × (1/2)^n</em>
<em>1/4 = (1/2)^n </em>
<em>n = 2 </em>
Thus; <em>3200 years is equivalent to 2 half lives.</em>
<em>Hence, the half life of radium-226 is 1600 years</em>
Answer:
<h2>7.5 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question
mass = 2.5 kg
acceleration = 3.0 m/s²
We have
force = 2.5 × 3.0 = 7.5
We have the final answer as
<h3>7.5 N</h3>
Hope this helps you
Answer:
The ball reaches Barney head in 
Explanation:
From the question we are told that
The rise velocity is 
The height considered is 
The horizontal velocity of the large object is 
Generally from kinematic equation

Here s is the distance of the object from Barney head ,
u is the velocity of the object along the vertical axis which is equal but opposite to the velocity of the helicopter
So

So

= 
Solving the above equation using quadratic formula
The value of t obtained is 