1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rosijanka [135]
3 years ago
7

Sebuah benda dijatuhkan bebas dari ketinggian 200 m jika grafitasi setempat 10 m/s maka hitunglah kecepatan dan ketinggian benda

saat ek=4ep
Physics
1 answer:
Pie3 years ago
7 0
Please post in English so i or someone else can help you.
You might be interested in
A soccer ball is kicked from point Pi at an angle above a horizontal field. The ball follows an ideal path before landing on the
Nutka1998 [239]

Answer:

A. The horizontal velocity vector points to the right & equals v cos θ.

Explanation:

The motion describes a parabolic path, where the horizontal speed is constant and the horizontal velocity vector always points to the right and equals v*cos θ.

8 0
3 years ago
To take off from the ground, an airplane must reach a sufficiently high speed. The velocity required for the takeoff, the takeof
BlackZzzverrR [31]
<h2>Answer: 26,8 s</h2>

Explanation:

If we are talking about an acceleration at a constant rate , we are dealing with constant acceleration, hence we can use the following equations:

{V_{f}}^{2}={V_{o}}^{2}+2ad (1)

V_{f}=V_{o}+at (2)

Where:

V_{f} is the final velocity of the plane (the takeoff velocity in this case)

V_{o}=0 is the initial velocity of the plane (we know it is zero because it starts from rest)

a=5m/s^{2} is the constant acceleration of the plane to reach the takeoff velocity

d=1800m is the distance of the runway

t is the time

Knowing this, let's begin with (1):

{V_{f}}^{2}=0+2(5m/s^{2})(1800m) (3)

{V_{f}}^{2}=18000m^{2}/s^{2} (4)

V_{f}=134.164 m/s (5)

Substituting (5) in (2):

134.164 m/s=0+(5m/s^{2})t (6)

Finding t:

t=26.8 s This is the time needed to take off

6 0
3 years ago
A leaky 10-kg bucket is lifted from the ground to a height of 11 m at a constant speed with a rope that weighs 0.9 kg/m. Initial
nalin [4]

Answer:

the work done to lift the bucket = 3491 Joules

Explanation:

Given:

Mass of bucket = 10kg

distance the bucket is lifted = height = 11m

Weight of rope= 0.9kg/m

g= 9.8m/s²

initial mass of water = 33kg

x = height in meters above the ground

Let W = work

Using riemann sum:

the work done to lift the bucket =∑(W done by bucket, W done by rope and W done by water)

= \int\limits^a_b {(Mass of Bucket + Mass of Rope + Mass of water)*g*d} \, dx

Work done in lifting the bucket (W) = force × distance

Force (F) = mass × acceleration due to gravity

Force = 9.8 * 10 = 98N

W done by bucket = 98×11 = 1078 Joules

Work done to lift the rope:

At Height of x meters (0≤x≤11)

Mass of rope = weight of rope × change in distance

= 0.8kg/m × (11-x)m

W done = integral of (mass×g ×distance) with upper 11 and lower limit 0

W done = \int\limits^1 _0 {9.8*0.8(11-x)} \, dx

Note : upper limit is 11 not 1, problem with math editor

W done = 7.84 (11x-x²/2)upper limit 11 to lower limit 0

W done = 7.84 [(11×11-(11²/2)) - (11×0-(0²/2))]

=7.84(60.5 -0) = 474.32 Joules

Work done in lifting the water

At Height of x meters (0≤x≤11)

Rate of water leakage = 36kg ÷ 11m = \frac{36}{11}kg/m

Mass of rope = weight of rope × change in distance

= \frac{36}{11}kg/m × (11-x)m =  3.27kg/m × (11-x)m

W done = integral of (mass×g ×distance) with upper 11 and lower limit 0

W done = \int\limits^1 _0 {9.8*3.27(11-x)} \, dx

Note : upper limit is 11 not 1, problem with math editor

W done = 32.046 (11x-x²/2)upper limit 11 to lower limit 0

W done = 32.046 [(11×11-(11²/2)) - (11×0-(0²/2))]

= 32.046(60.5 -0) = 1938.783 Joules

the work done to lift the bucket =W done by bucket+ W done by rope +W done by water)

the work done to lift the bucket = 1078 +474.32+1938.783 = 3491.103

the work done to lift the bucket = 3491 Joules

8 0
4 years ago
The vertical displacement of the wave is measured from the
algol13
The vertical displacement of the wave is measured from
the equilibrium to the crest and is called the amplitude.
6 0
4 years ago
Read 2 more answers
what is the light that appears when you touch something metal while you have alot of static electricity​
geniusboy [140]

When you touch a doorknob (or something else made of metal), which has a positive charge with few electrons, the extra electrons want to jump from you to the knob. That tiny shock you feel is a result of the quick movement of these electrons.
3 0
3 years ago
Other questions:
  • If the same types of fossils are found in two separate rock layers, it's likely that the two rock layers ____. A-formed at diffe
    15·2 answers
  • A spring is hung from the ceiling. When a block is attached to its end, it stretches 2.5 cm before reaching its new equilibrium
    14·1 answer
  • What force is described as the attraction between a sample of matter and all other matter in the universe?
    15·1 answer
  • 6. Given a force of 10 N and an acceleration of 5 m/s?, what is the mass?​
    14·1 answer
  • Why do stars explode?
    15·1 answer
  • Tunicates resemble a _____ on the sea floor. <br> rod<br> square<br> sac<br> hole
    12·2 answers
  • A light bulb has a power rating of 60 W. What is the current running into it if it is plugged into a 120 V outlet?
    12·1 answer
  • A penny is dropped from the top of a building
    15·1 answer
  • Which charateristic of the observant function?
    12·1 answer
  • What's distillation?......<br>​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!