Answer:
it burns things which would be burned easily by lightning, and then people put the fire out immediately. If the dried plants that they are lighting on fire are hit by lightning, it can lead to a massive fire without anyone realizing.
This one is beta decay (the -1 subscript tells us that)
<span>The equation that represents the process of photosynthesis
is: </span>
<span>
</span>
<span>6CO2+12H2O+light->C6H12O6+6O2+6H2O</span>
<span>
</span>
<span>Photosynthesis is the
process in plants to make their food. This involves the use carbon dioxide to
react with water and make sugar or glucose as the main product and oxygen as a
by-product. Since we are not given the mass of CO2 in this problem, we assume that we have 1 g of CO2 available. We calculate as follows:</span>
<span>
</span>
<span>1 g CO2 ( 1 mol CO2 / 44.01 g CO2 ) ( 12 mol H2O / 6 mol CO2 ) ( 18.02 g / 1 mol ) = 0.82 g of H2O is needed</span>
<span>
</span>
However, if the amount given of CO2 is not one gram, then you can simply change the starting value in the calculation and solve for the mass of water needed.
<span>
</span>
Answer:
324.18 g/mol
Explanation:
Let the molecular mass of the antimalarial drug, Quinine is x g/mol
According to question,
Nitrogen present in the drug is 8.63% of x
So, mass of nitrogen = 
Also, according to the question,
2 atoms are present in 1 molecule of the drug.
Mass of nitrogen = 14.01 amu = 14.01 g/mol (grams for 1 mole)
So, mass of nitrogen = 14.01×2 = 28.02
These 2 must be equal so,

solving for x, we get:
<u>x = 324.18 g/mol</u>
<u>Answer:</u> The net ionic equation is written below.
<u>Explanation:</u>
Net ionic equation of any reaction does not include any spectator ions.
Spectator ions are defined as the ions which does not get involved in a chemical equation. They are found on both the sides of the chemical reaction when it is present in ionic form.
The chemical equation for the reaction of sodium carbonate and nickel (II) chloride is given as:

Ionic form of the above equation follows:

As, sodium and chloride ions are present on both the sides of the reaction. Thus, it will not be present in the net ionic equation and are spectator ions.
The net ionic equation for the above reaction follows:

Hence, the net ionic equation is written above.