Answer:
The mass of PbSO4 formed 15.163 gram
Explanation:
mole of Pb(NO₃)₂ = 1.25 x 0.05 = 0.0625
mole of Na₂SO₄ = 2 x 0.025 = 0.05
Pb(NO₃)₂ + Na₂SO₄ → PbSO₄ + 2 NaNO₃
( Mole/Stoichiometry )
= 0.0625 = 0.05
From (Mole/ Stoichiometry ) we can conclude that Na₂SO₄ is limiting reagent.
Mass of PbSO₄ precipitate = 0.05 x Molecular mass of PbSO₄
= 0.05 x 303.26 g
= 15.163 g
Bsjsgsusgsjdgsbsbsjshsgshshs
Answer:
Elements can be described by various properties, and identified by their boiling and melting points. For example, gold melts at
Elements can be described by various properties, and identified by their boiling and melting points. For example, gold melts at 1,064ºC and boils at 2,856ºC. Does boiling point depend on the mass present?
A. No; chemical properties stay the same regardless of mass.
B. No; physical properties stay the same regardless of mass.
C. Yes; physical properties can change when mass increases or decreases.
D. No; qualitative properties like boiling point stay the same regardless of mass.
Explanation:
First figure out how many grams must freeze and then convert the grams to moles.
<span>Hf = -334 J/g. Convert this to KJ/g by dividing by 1000. (There are 1000 Joules in a kJ). </span>
<span>Hf = -334 J/g ÷ 1000 J/kj = -0.334 kJ/g </span>
<span>Now, divide 100 kJ by -0.334 kJ/g (see how the units are lining up?) </span>
<span>100 kJ ÷ -0.334 kJ/g = 299 g </span>
<span>Now convert this to moles by dividing by the molecular weight of water (18.0g/mole). </span>
<span>299 ÷ 18.0 = 16.6 moles </span>