I’ll get back to u on this
Answer:
0!
Explanation:
- You need to search your pKa values for Asn (2.14, 8.75), Gly (2.35, 9.78) and Leu(2.33, 9.74), the first value corresponding to -COOH, the second to -NH3 (a third value would correspond to an R group, but in this case that does not apply), and we'll build a table to find the charges for your possible dissociated groups at indicated pH (7), we need to remember that having a pKa lower than the pH will give us a negative charge, having a pKa bigger than pH will give us a positive charge:
-COOH -NH3
pH 7------------------------------------------------------
Asn - +
Gly - +
Leu - +
- Now that we have our table we'll sketch our peptide's structure:
<em>HN-Asn-Gly-Leu-COOH</em>
This will allow us to see what groups will be free to react to the pH's value, and which groups are not reacting to pH because are forming the bond between amino acids. In this particular example only -NH group in Ans and -COOH in Leu are exposed to pH, we'll look for these charges in the table and add them to find the net charge:
+1 (HN-Asn)
-1 (Leu-COOH)
=0
The net charge is 0!
I hope you find this information useful and interesting! Good luck!
<span>35 grams
The average salinity of seawater is 35 parts per thousand, so multiply the mass of seawater provided by 0.035 and you'll get the amount of salt (mostly sodium chloride) dissolved in it. So
1000 g * 0.035 = 35 g
Therefore in 1 kilogram of seawater with average salinity, there is 35 grams of salt.</span>
Answer:
6.9 ml of concentrate
Explanation:
100 ml of .1 M will require .01 moles
from a 1.45 M solution, .01 mole would be
.01 mole / ( 1.45 mole / liter) = 6.9 ml of the concentrate then dilute to 100 ml
Answer: Radio waves has the lowest energy and longest wavelength.