Intermolecular forces of attraction hold the molecules together. These forces determine the physical properties of substances like melting and boiling points. There are five types of intermolecular forces: Hydrogen bonding, dipole-dipole interactions, ionic interactions, ion-dipole interactions and dispersion forces.
Hydrogen bonding is a stronger force of attraction between hydrogen atom and an electronegative atom (F, N, and O). So, water molecules exhibit hydrogen bonding.
In carbon dioxide molecules, although each C=O is polar the molecule as a whole will be non polar due to symmetry. Therefore, the only intermolecular forces in CO2 will be dispersion forces.
Hence, Hydrogen bonding exists between water molecules but not carbon dioxide molecules.
Answer: He spends 29.17 hours per week
Explanation:
1 class = 50mins
7 classes = 7 x 50mins = 350mins
For 5 days in a week, we have
5 x 350mins = 1750mins
Converting to hours, we have
1750 /60 = 29.17 hours
Answer:
<h2>
Kevlar has unique properties such as:</h2><h2><em>
High tensile strength</em>
, <em>
high toughness</em>
, and <em>
chemical stability </em>
at high temperatures<em>
</em>
in polyamides (polymer with repeating unit links by amide bonds.) </h2><h3>
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</h3>
Δ What is Kelvar? Δ
~ Kevlar is a heat-resistant and strong synthetic fiber
~ Kevlar is widely used as a friction material in the automotive industry, and a combustion protection material in the aerospace industry. <em>~Looked that up!</em>
<h3>
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</h3>
<em>Hope I helped!!!</em>
<em>GL :)</em>
According to this formula:
(P1V1) / T1 = (P2V2) / T2
convert T from C° to Kelvin:
T1 = 83 + 273 = 356 K
T2= 96 + 273 = 369 K
convert P from torr to atm:
1 torr = 0.00131578947 atm<span>
p1 = 0.839474 atm
P2 = 1.415789 atm
By substitution in the previous formula:
(0.839474 x 10.6 ) / (356) = ( 1.415789 x V2 ) / 369
So:
V2 = 6.5 L</span>
Answer:
Please, see attached two figures:
- The first figure shows the solutility curves for several soluts in water, which is needed to answer the question.
- The second figure shows the reading of the solutiblity of NH₄Cl at a temperature of 60°C.
Explanation:
The red arrow on the second attachement shows how you must go vertically from the temperature of 60ºC on the horizontal axis, up to intersecting curve for the <em>solubility</em> of <em>NH₄Cl.</em>
From there, you must move horizontally to the left (green arrow) to reach the vertical axis and read the solubility: the reading is about in the middle of the marks for 50 and 60 grams of solute per 100 grams of water: that is 55 grams of grams of solute per 100 grams of water.
Assuming density 1.0 g/mol for water, 10 mL of water is:
Thus, the solutibily is:
