1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tiny-mole [99]
3 years ago
13

33.1 x 105 What is the scientific notation

Chemistry
1 answer:
Sunny_sXe [5.5K]3 years ago
4 0

Answer:

3475.5 or 6591/2

Explanation:

You might be interested in
7) Cooking or baking food results in a _________________ change
Flauer [41]
I think the answer is chemical change
6 0
3 years ago
Hello, everyone!
marusya05 [52]

Answer: 27.09 ppm and 0.003 %.

First, <u>for air pollutants, ppm refers to parts of steam or gas per million parts of contaminated air, which can be expressed as cm³ / m³. </u>Therefore, we must find the volume of CO that represents 35 mg of this gas at a temperature of -30 ° C and a pressure of 0.92 atm.

Note: we consider 35 mg since this is the acceptable hourly average concentration of CO per cubic meter m³ of contaminated air established in the "National Ambient Air Quality Objectives". The volume of these 35 mg of gas will change according to the atmospheric conditions in which they are.

So, according to the <em>law of ideal gases,</em>  

PV = nRT

where P, V, n and T are the pressure, volume, moles and temperature of the gas in question while R is the constant gas (0.082057 atm L / mol K)

The moles of CO will be,

n = 35 mg x \frac{1 g}{1000 mg} x \frac{1 mol}{28.01 g}

→ n = 0.00125 mol

We clear V from the equation and substitute P = 0.92 atm and

T = -30 ° C + 273.15 K = 243.15 K

V =  \frac{0.00125 mol x 0.082057 \frac{atm L}{mol K}  x 243 K}{0.92 atm}

→ V = 0.0271 L

As 1000 cm³ = 1 L then,

V = 0.0271 L x \frac{1000 cm^{3} }{1 L} = 27.09 cm³

<u>Then the acceptable concentration </u><u>c</u><u> of CO in ppm is,</u>

c = 27 cm³ / m³ = 27 ppm

<u>To express this concentration in percent by volume </u>we must consider that 1 000 000 cm³ = 1 m³ to convert 27.09 cm³ in m³ and multiply the result by 100%:

c = 27.09 \frac{cm^{3} }{m^{3} } x \frac{1 m^{3} }{1 000 000 cm^{3} } x 100%

c = 0.003 %

So, <u>the acceptable concentration of CO if the temperature is -30 °C and pressure is 0.92 atm in ppm and as a percent by volume is </u>27.09 ppm and 0.003 %.

5 0
3 years ago
For the reaction Na2CO3+Ca(NO3)2⟶CaCO3+2NaNO3 how many grams of calcium carbonate, CaCO3, are produced from 79.3 g of sodium car
Alexus [3.1K]

Answer:

74.81 grams of calcium carbonate are produced from 79.3 g of sodium carbonate.

Explanation:

The balanced reaction is:

Na₂CO₃ + Ca(NO₃)₂ ⟶ CaCO₃ + 2 NaNO₃

By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of each compound participate in the reaction:

  • Na₂CO₃: 1 mole
  • Ca(NO₃)₂: 1 mole
  • CaCO₃: 1 mole
  • NaNO₃: 2 mole

Being the molar mass of the compounds:

  • Na₂CO₃: 106 g/mole
  • Ca(NO₃)₂: 164 g/mole  
  • CaCO₃: 100 g/mole
  • NaNO₃: 85 g/mole

then by stoichiometry the following quantities of mass participate in the reaction:

  • Na₂CO₃: 1 mole* 106 g/mole= 106 g
  • Ca(NO₃)₂: 1 mole* 164 g/mole= 164 g
  • CaCO₃: 1 mole* 100 g/mole= 100 g
  • NaNO₃: 2 mole* 85 g/mole= 170 g

You can apply the following rule of three: if by stoichiometry 106 grams of Na₂CO₃ produce 100 grams of  CaCO₃, 79.3 grams of Na₂CO₃ produce how much mass of  CaCO₃?

mass of CaCO_{3} =\frac{79.3 grams of Na_{2} CO_{3} *100 grams of of CaCO_{3}}{106 grams of Na_{2} CO_{3}}

mass of CaCO₃= 74.81 grams

<u><em>74.81 grams of calcium carbonate are produced from 79.3 g of sodium carbonate.</em></u>

6 0
3 years ago
If you have 12.5g of fluoride and 16.2g of sodium, which is the limiting reactant and how sodium fluoride in grams is your theor
Korvikt [17]

Answer:

F2 is the limiting reactant

27.6 grams of NaF is produced.

Explanation:

Balance the equation first.

2Na+ F2 ---> 2NaF

To find the limiting reactant, solve for how much NaF can be produced with Na and F2

12.5g F2 x (1 mole F2/ 38.00 grams F2)x (2 mole NaF/ 1 mole F2)

=0.658 moles NaF

16.2g Na x (1 mole Na/ 22.99 grams Na)x (2 mole NaF/ 2 mole Na)

=0.705 moles NaF

Since F2 produced the least NaF, F2 is the limiting reactant.

Now, to find how much NaF there is, use the moles solved above with F2 as the limiting reactant.

0.658 moles NaF x (41.99 grams NaF/ 1 mole NaF)= 27.6 moles NaF

27.6 moles of NaF would be theoretically produced.

8 0
3 years ago
The __________ system is made up of the nose, pharynx, trachea, lungs, bronchi, and alveoli. *
Reil [10]
Respiratory system is made of that
4 0
3 years ago
Read 2 more answers
Other questions:
  • __________ enable humans to see and detect the color of different objects.
    12·2 answers
  • An atom has the following electron configuration.
    11·2 answers
  • What amount of ammonia, NH3(g), can be produced from 15 mol of hydrogen reacting with excess nitrogen?
    9·1 answer
  • Oxidation-reduction is often the most confusing and abstract part of chemistry for first-time chemistry students. Is it really w
    7·1 answer
  • Which unit is used for measuring atomic mass?
    8·2 answers
  • Explain the process of initiation and elongation.
    9·1 answer
  • What do the presence of fish and a wide diversity of invertebrates in a river indicate?
    8·1 answer
  • What is the mass of oxygen gas in a 16.8 l container at 23.0◦c and 2.50 atm? answer in units of g?
    9·1 answer
  • Draw the Lewis structure of NCl3NCl3 . Include lone pairs. Select Draw Rings More Erase Select Draw Rings More Erase Select Draw
    12·1 answer
  • I really need help with the first two fill in the blanks
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!