Hi,
The answer is gravity.
The bigger the object is the more are other smaller objects attracted to it. The opposite of gravity is dark energy which keeps objects apart and accelerates expansion of the universe.
Hope this helps.
r3t40
Answer:
87.27 grams
Explanation:
The mole ratio of nitrogen to hydrogen is 1:3; while that one of hydrogen to the products (ammonia) is 3:2
Thus if 3 moles of hydrogen gas produce 2 moles of ammonia gas
7.7 moles of hydrogen will produce:
(7.7moles×2)/3
77/15 moles
1 mole of ammonia gas has a mass of 14+3=17
since the mass of an atom of nitrogen is 14 while that of hydrogen atom is 1.
Therefore 77/15 moles will have a mass of
77/15 moles × 17=87.27 grams
To Find :
The volume of 12.1 moles hydrogen at STP.
Solution :
We know at STP, 1 mole of gas any gas occupy a volume of 22.4 L.
Let, volume of 12.1 moles of hydrogen is x.
So, x = 22.4 × 12.1 L
x = 271.04 L
Therefore, the volume of hydrogen gas at STP is 271.04 L.
Answer:
- <u><em>You should expect that the ionic bond in LiBr is stronger than the bond in KBr.</em></u>
<u><em /></u>
Explanation:
The<em> ionic bonds</em> are formed by the electrostatic attraction between the ions, cations and anions.
In KBr the cation is K⁺ and the anion is Br⁻.
In LiBr the cation is Li⁺ and the anion is Br⁻.
You must expect that the bond strength depends mainly on the charges present on each ion and the distance between them.
Nevertheless, the effect of the distance between the radius dominate the trendency of the bond strength, which makes that the ionic strength trend be related to the ionic radius trend.
Lithium is a smaller ion than Potassium (both are in the same group and Lithium is above Potassium).
Thus, you should expect that the Li ion is closer to the Br ion than what the K ion is to the Br ion and expect that the bond between a Li ion and the Br ion be stronger than the bond between the K ion and the Br ion.
Answer:
0.087 moles of water
Explanation:
Given data:
Number of molecules of water = 5.24×10²² molecules
Number of moles of water = ?
Solution:
Avogadro number:
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance. The number 6.022 × 10²³ is called Avogadro number.
1 mole = 6.022 × 10²³ molecules of water
5.24×10²² molecules × 1 mol / 6.022 × 10²³ molecules
0.87×10⁻¹ mol
0.087 mol