Evaluate A² for A = -3.
(-3)² = (-3) * (-3) = 9
Your answer is 9.
If the question is, however, evaluate A2, which is 2A, for A = -3, then the answer is:
2A = 2(-3) = -6.
To check the decay rate, we need to check the variation in y-axis.
Since our interval is
![-2We need to evaluate both function at those limits.At x = -2, we have a value of 4 for both of them, at x = 0 we have 1 for the exponential function and 0 to the quadratic function. Let's call the exponential f(x), and the quadratic g(x).[tex]\begin{gathered} f(-2)=g(-2)=4 \\ f(0)=1 \\ g(0)=0 \end{gathered}](https://tex.z-dn.net/?f=-2We%20need%20to%20evaluate%20both%20function%20at%20those%20limits.%3Cp%3E%3C%2Fp%3E%3Cp%3EAt%20x%20%3D%20-2%2C%20we%20have%20a%20value%20of%204%20for%20both%20of%20them%2C%20at%20x%20%3D%200%20we%20have%201%20for%20the%20exponential%20function%20and%200%20to%20the%20quadratic%20function.%20Let%27s%20call%20the%20exponential%20f%28x%29%2C%20and%20the%20quadratic%20g%28x%29.%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%5Btex%5D%5Cbegin%7Bgathered%7D%20f%28-2%29%3Dg%28-2%29%3D4%20%5C%5C%20f%280%29%3D1%20%5C%5C%20g%280%29%3D0%20%5Cend%7Bgathered%7D)
To compare the decay rates we need to check the variation on the y-axis of both functions.

Now, we calculate their ratio to find how they compare:

This tell us that the exponential function decays at three-fourths the rate of the quadratic function.
And this is the fourth option.
Answer:
64978256+8734965+709685+1 = 74,422,907
Answer:
x=-2
Step-by-step explanation:
3x-1=8x+8+1
3x-1 = 8x+9
3x-1+1=8x+9+1
3x= 8x+10
3x-8x=8x+10-8x
-5x=10
-5x ÷-5
10 ÷-5
x=-2
Step-by-step explanation:
For the charges that have same sign of charges will repel each other while for the charges that have different charges will attract each other. So, we can say that like charges repel and unlike charges attract each other.
The Coulomb's law of attraction of repulsion states that force between charges is directly proportion to the product of charges and inversely proportional to the square of distance between them. Mathematically, it is given by :

Hence, all the given statements are true.