Answer:
C
Step-by-step explanation:
Because i'm smart and did the math.
<span>It is a weak negative correlation, and it is not likely causal.</span>
SOLUTION
The question simply means that we should find the sum to infinity of the geometric series.
The formula of sum to infinity of a geometric serie is given by
![S_{\infty}=\frac{a}{1-r}](https://tex.z-dn.net/?f=S_%7B%5Cinfty%7D%3D%5Cfrac%7Ba%7D%7B1-r%7D)
Where
![\begin{gathered} S_{\infty}\text{ is the sum to infinity} \\ \\ a\text{ is the first term = 1} \\ \\ r\text{ is the common ratio = }\frac{2}{3} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20S_%7B%5Cinfty%7D%5Ctext%7B%20is%20the%20sum%20to%20infinity%7D%20%5C%5C%20%20%5C%5C%20a%5Ctext%7B%20is%20the%20first%20term%20%3D%201%7D%20%5C%5C%20%20%5C%5C%20r%5Ctext%7B%20is%20the%20common%20ratio%20%3D%20%7D%5Cfrac%7B2%7D%7B3%7D%20%5Cend%7Bgathered%7D)
So, this becomes
![\begin{gathered} S_{\infty}=\frac{a}{1-r} \\ \\ S_{\infty}=\frac{1}{1-\frac{2}{3}} \\ \\ S_{\infty}=\frac{1}{\frac{3-2}{3}} \\ \\ S_{\infty}=\frac{1}{\frac{1}{3}} \\ \\ S_{\infty}=3 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20S_%7B%5Cinfty%7D%3D%5Cfrac%7Ba%7D%7B1-r%7D%20%5C%5C%20%20%5C%5C%20S_%7B%5Cinfty%7D%3D%5Cfrac%7B1%7D%7B1-%5Cfrac%7B2%7D%7B3%7D%7D%20%5C%5C%20%20%5C%5C%20S_%7B%5Cinfty%7D%3D%5Cfrac%7B1%7D%7B%5Cfrac%7B3-2%7D%7B3%7D%7D%20%5C%5C%20%20%5C%5C%20S_%7B%5Cinfty%7D%3D%5Cfrac%7B1%7D%7B%5Cfrac%7B1%7D%7B3%7D%7D%20%5C%5C%20%20%5C%5C%20S_%7B%5Cinfty%7D%3D3%20%5Cend%7Bgathered%7D)
Therefore, option b is the correct answer
The greatest common factor is 2a
Answer:
![r^{6}](https://tex.z-dn.net/?f=r%5E%7B6%7D)
Step-by-step explanation:
Using the rule of exponents
=
, then
=
= ![r^{6}](https://tex.z-dn.net/?f=r%5E%7B6%7D)