ok so what you wanna do is use multiplication
Answer:
1.5
Step-by-step explanation:
divide 1/2 and add 1
Using the normal distribution, it is found that 0.26% of the items will either weigh less than 87 grams or more than 93 grams.
In a <em>normal distribution</em> with mean
and standard deviation
, the z-score of a measure X is given by:
- It measures how many standard deviations the measure is from the mean.
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.
In this problem:
- The mean is of 90 grams, hence
.
- The standard deviation is of 1 gram, hence
.
We want to find the probability of an item <u>differing more than 3 grams from the mean</u>, hence:



The probability is P(|Z| > 3), which is 2 multiplied by the p-value of Z = -3.
- Looking at the z-table, Z = -3 has a p-value of 0.0013.
2 x 0.0013 = 0.0026
0.0026 x 100% = 0.26%
0.26% of the items will either weigh less than 87 grams or more than 93 grams.
For more on the normal distribution, you can check brainly.com/question/24663213
25 anything raised to zero equals one
Answer:
Step-by-step explanation:
Let the other side of the rectangle be y. The perimeter of the rectangle is expressed as P = 2(x+y)
Given P = 30ft, on substituting P = 30 into the expression;
30 = 2(x+y)
x+y = 15
y = 15-x
Also since the area of the rectangle is xy;
A = xy
Substitute y = 15-x into the area;
A = x(15-x)
A = 15x-x²
The function that models its area A in terms of the length x of one of its sides is A = 15x-x²
The side of length x yields the greatest area when dA/dx = 0
dA/dx = 15-2x
15-2x = 0
-2x = -15
x = -15/-2
x = 7.5 ft
Hence the side length, x that yields the greatest area is 7.5ft.
Since y = 15-x
y = 15-7.5
y = 7.5
Area of the rectangle = 7.5*7.5
Area of the rectangle = 56.25ft²