Answer:
AB = ![\left[\begin{array}{ccc}-3&4&6\\-6&3&5\\5&0&-4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-3%264%266%5C%5C-6%263%265%5C%5C5%260%26-4%5Cend%7Barray%7D%5Cright%5D)
Each column of AB is written as a linear combination of columns of Matrix A in the explanation below.
Step-by-step explanation:
A = ![\left[\begin{array}{ccc}-2&2&1\\-3&1&1\\2&0&-1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%262%261%5C%5C-3%261%261%5C%5C2%260%26-1%5Cend%7Barray%7D%5Cright%5D)
B= ![\left[\begin{array}{ccc}2&-1&0\\1&2&1\\-1&-2&4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%26-1%260%5C%5C1%262%261%5C%5C-1%26-2%264%5Cend%7Barray%7D%5Cright%5D)
We need to write each column of AB as a linear combination of the columns of A so we will multiply each column of A with each column element of B to get the column of AB. So,
AB Column 1 = 2 *
+ 1
+ (-1)
= ![\left[\begin{array}{ccc}-3\\-6\\5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-3%5C%5C-6%5C%5C5%5Cend%7Barray%7D%5Cright%5D)
AB Column 2 = (-1)
+ 2
+ (-2)
= ![\left[\begin{array}{ccc}4\\3\\0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%5C%5C3%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
AB Column 3 = (0)
+ (1)
+ 4
= ![\left[\begin{array}{ccc}6\\5\\-4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D6%5C%5C5%5C%5C-4%5Cend%7Barray%7D%5Cright%5D)
Finally, we can combine all three columns of AB to form the 3x3 matrix AB.
AB = ![\left[\begin{array}{ccc}-3&4&6\\-6&3&5\\5&0&-4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-3%264%266%5C%5C-6%263%265%5C%5C5%260%26-4%5Cend%7Barray%7D%5Cright%5D)
Return rate, r = 3% = 0.03
x = initial investment
b = final balance
After 1 year, the balance i
b = initial investment + interest
b = x + r*x = (1 + r)*x
Because r = 0.03,
b = 1.03x (after 1 year)
Answer:
(-1/2, 1)
Step-by-step explanation:
it's just coordinate planed
If the areas of two equilateral triangles are 27 yd² and 75 yd², then the ratio of these areas is 27/75 = 9/25
If the ratios of the areas are 9:25, then their similarity ratio and the ratio of their perimeters is √9:√35 = 3:5.
3 : 5; 3 : 5 <==ANSWER