Answer:
95% Confidence interval for the mean

Step-by-step explanation:
We have to calculate a 95% confidence interval for the mean of a finite population.
The error is multiplied by the following finite population correction factor:

The standard deviation can be estimated as

The 95% confidence interval has a z value of 1.96, so it becomes:

Answer:
Port r is 100° from Port p and 26km from Port p
Step-by-step explanation:
Lets note the dimension.
From p to q = 15 km = a
From q to r = 20 km= b
Angle at q = 50° + 45°
Angle at q = 95°
Ley the unknown distance be x
Distance from p to r is the unknown.
The formula to be applied is
X²= a²+ b² - 2abcosx
X²= 15² + 20² - 2(15)(20)cos95
X²= 225+400-(-52.29)
X²= 677.29
X= 26.02
X is approximately 26 km
To know it's direction from p
20/sin p = 26/sin 95
Sin p= 20/26 * sin 95
Sin p = 0.7663
P= 50°
So port r is (50+50)° from Port p
And 26 km far from p
The question is asking for you to plug in each number in the brackets into x and solve for y, or f(x), g(x), etc. I will do no. 19 as an example:
f(x) = -3x + 1
This problem has the domains -2, -1, and 0. First, we'll start with -2:
f(x) = -3(-2) + 1
f(x) = 6 + 1
f(x) = 7
Now -1:
f(x) = -3(-1) + 1
f(x) = 3 + 1
f(x) = 4
Lastly, 0:
f(x) = -3(0) + 1
f(x) = 0 + 1
f(x) = 1
For question 23, we can use the distance formula, which is ratextime. The domain in this case is time (t). You can set up a function like this: d(t) = 60t