The composite function
works like this:
- Take a number
as input - Evaluate h(x) = 3x. Let's call this output z.
- Evaluate g(x) = 1/(z+2)
So, if we substitute back z = 3x, the final output is 1/(3x+2). We know that the denominator of a fraction can't be zero, so we must impose

- Vertex/General Form: y = a(x - h)^2 + k, with (h,k) as the vertex
- (x + y)^2 = x^2 + 2xy + y^2
- Standard Form: y = ax^2 + bx + c
So before I put the equation into standard form, I'm first going to be putting it into vertex form. Since the vertex appears to be (-1,7), plug that into the vertex form formula:

Next, we need to solve for a. Looking at this graph, another point that is in this line is the y-intercept (0,5). Plug (0,5) into the x and y placeholders and solve for a as such:

Now we know that <u>our vertex form equation is y = -2(x + 1)^2 + 7.</u>
However, we need to convert this into standard form still, and we can do it as such:
Firstly, solve the exponent: 
Next, foil -2(x^2+2x+1): 
Next, combine like terms and <u>your final answer will be:
</u>
Steps:
1. calculate the values of y at x=0,1,2. using y=5-x^2
2. calculate the areas of trapezoids (Bottom+Top)/2*height
3. add the areas.
1.
x=0, y=5-0^2=5
x=1, y=5-1^2=4
x=2, y=5-2^2=1
2.
Area of trapezoid 1 = (5+4)/2*1=4.5
Area of trapezoid 2 = (4+1)/2*1=2.5
Total area of both trapezoids = (4.5+2.5) = 7
Exact area by integration:
integral of (5-x^2)dx from 0 to 2
=[5x-x^3/3] from 0 to 2
=[5(2-0)-(2^3-0^3)/3]
=10-8/3
=22/3
=7 1/3, slight greater than the estimation by trapezoids.
Answer:
false
Step-by-step explanation:
If the vertical line hits more than 1 point it is not a function because the x value cannot repeat in order for it to be a function
Total number of seniors = 55 + 70 = 125
Number of seniors who plan to go to college = 55
Percentage of seniors who plan to go to college = 55/125 x 100 = 44%
Answer: 44%