<u>Explanation</u><u>:</u>
Consider ABCD is a rhombus
We know that
All sides are equal in rhombus i.e,
⇛AB=BC=CD=DA
and AC and BD are digonals
Given that
Diagonal and the side of the rhombus are equal.
⇛AB = BC = CD = DA = AC
Diagonal AC divides the rhombus into two triangles .
They are ∆ BAC and ∆ DAC
In triangle BAC
BA=BC=AC,(Given)
⇛∠ BAC=∠ABC= ∠ACB =60°→→→Eqn(i)
Similarly in ∆DAC ,
DA=DC=AC
⇛∠DAC=∠ACD=∠ADC=60°→→→Eqn(ii)
From eqn(i) and eqn(ii)
∠A=∠BAC+∠DAC=60°+60°=120°
and
∠B= ∠ABC = 60°.
and
∠C=∠ACB+∠ACD=60°+60°=120°
and
∠D =∠ADC=60°
∴ ∠A = 120° , ∠B = 60° ,∠C = 120° & ∠D = 60°
<u>Answer:</u><u>-</u>The measures of the all angles in the rhombus are 120° , 60° ,120° and 60°.
Note: [Figure refers in the attached file.
They would put the bolts inside the boxes and bags
Plane acb
plane bac
plane bca
plane cab
plane cba
We know that
<span>The nine radii of a regular Nonagon divides into 9 congruent isosceles triangles
</span>therefore
[the area of <span>a regular nonagon]=9*[area of isosceles triangle]
</span>[area of isosceles triangle]=b*h/2------> 15*20.6/2----> 154.5 cm²
so
[the area of a regular nonagon]=9*[154.5]------> 1390.5 cm²
the answer is
1390.5 cm²
Answer:
times each other
Step-by-step explanation:
times by each other