Answer:

Step-by-step explanation:
you use the distributive property to multiply these together
so its x times 5x plus x times -2 plus 1 times 5x plus 1 times -2
Answer: choice A
Step-by-step explanation:
by rearranging the initial inequality you’ll get

which equals

then multiply both sides by 2/3

Answer:
The time taken for the flare to hit the ground is approximately 10.7 seconds.
Step-by-step explanation:
Given : Suppose a flare is shot from the top of a 120 foot building at a speed of 160 feet per second. The equation
models the h height at t seconds of the flare.
To find : How long will it take for the flare to hit the ground?
Solution :
The equation
models the h height at t seconds of the flare.
The flare to hit the ground when h=0.
Substitute in the equation,

Applying quadratic formula, 
Where, a=-16, b=160 and c=120





Reject the negative value.
Therefore, the time taken for the flare to hit the ground is approximately 10.7 seconds.
Answer:
q = -8, k = 2.
r = -6.
Step-by-step explanation:
f(x) = (x - p)^2 + q
This is the vertex form of a quadratic where the vertex is at the point (p, q).
Now the x intercepts are at -6 and 2 and the curve is symmetrical about the line x = p.
The value of p is the midpoint of -6 and 2 which is (-6+2) / 2 = -2.
So we have:
f(x) = 1/2(x - -2)^2 + q
f(x) = 1/2(x + 2)^2 + q
Now the graph passes through the point (2, 0) , where it intersects the x axis, therefore, substituting x = 2 and f(x) = 0:
0 = 1/2(2 + 2)^2 + q
0 = 1/2*16 + q
0 = 8 + q
q = -8.
Now convert this to standard form to find k:
f(x) = 1/2(x + 2)^2 - 8
f(x) = 1/2(x^2 + 4x + 4) - 8
f(x) = 1/2x^2 + 2x + 2 - 8
f(x) = 1/2x^2 + 2x - 6
So k = 2.
The r is the y coordinate when x = 0.
so r = 1/2(0+2)^2 - 8
= -6.
Answer:
it is 6
Step-by-step explanation: