Answer:
1019.27 g.
Explanation:
- For the balanced reaction:
<em>2Na + Cl₂ → 2NaCl,</em>
It is clear 2 moles of Na with 1 mole of Cl₂ to produce 2 moles NaCl.
- Firstly, we need to calculate the no. of moles of Cl₂ is needed to react with 57.5 mol Na:
2 moles of Na need → 1 mol of Cl₂, from the stichiometry.
57.5 moles of Na need → ??? mol of Cl₂.
<em>∴ The no. of moles of Cl₂ is needed to react with 57.5 mol Na =</em> (1 mol)(57.5 mol)/((2 mol) <em>= 28.75 mol.</em>
<em>∴ the mass of Cl₂ is needed to react with 57.5 mol Na = (no. of moles of Cl₂)(molar mass of Cl₂) =</em> (28.75 mol)(35.453 g/mol) <em>= 1019.27 g.</em>
Answer:
They are found the same way but use different symbols when found.
Explanation:
Answer:
The molar mass of the gas is 44.19 g/mol
Explanation:
Amount of sample of gas = m = 13.5 g
Volume occupied by the gas = V = 5.10 L
Pressure of the gas = P = 149.83 KPa
1 KPa = 0.00986 atm
P = 
Assuming M g/mol to be the molar mass of the gas
Assuming the gas is behaving as an ideal gas

The molar mass of gas is 44.19 g/mol
Explanation:
Experiment Initial [CS2] (mol/L) Initial Rate (mol/L·s)
1 0.100 2.7 × 10−7
2 0.080 2.2 × 10−7
3 0.055 1.5 × 10−7
4 0.044 1.2 × 10−7
a) Choose the rate law for the decomposition of CS2.
Comparing equations 1 and 3, reducing the initial concentration by almost half (from 0.100 to 0.055) leads too the rate of reaction to be reduced by almost half (from 2.7 × 10−7 to 1.5 × 10−7).
This signifies that the reaction is a first order reaction.
Rate = k [CS2]
(b) Calculate the average value of the rate constant.
Taking equation 1.
Rate = k [CS2]
k = Rate / [CS2]
k = 0.100 / (2.7 × 10−7) = 0.037 x 10^8 = 3.7 x 10^6s-1