Answer:
![\boxed{4 \sqrt[8]{ {d}^{3} } }](https://tex.z-dn.net/?f=%20%5Cboxed%7B4%20%5Csqrt%5B8%5D%7B%20%7Bd%7D%5E%7B3%7D%20%7D%20%7D%20)
Step-by-step explanation:
![= > 4 {d}^{ \frac{3}{8} } \\ \\ = > 4({d}^{3 \times \frac{1}{8} }) \\ \\ = > 4( {d}^{3} \times {d}^{ \frac{1}{8} } ) \\ \\ = > 4( {d}^{3} \times \sqrt[8]{d} ) \\ \\ = > 4 \sqrt[8]{ {d}^{3} }](https://tex.z-dn.net/?f=%20%3D%20%20%3E%204%20%7Bd%7D%5E%7B%20%5Cfrac%7B3%7D%7B8%7D%20%7D%20%20%20%5C%5C%20%20%5C%5C%20%3D%20%20%20%3E%204%28%7Bd%7D%5E%7B3%20%5Ctimes%20%20%5Cfrac%7B1%7D%7B8%7D%20%7D%29%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%204%28%20%7Bd%7D%5E%7B3%7D%20%20%5Ctimes%20%20%20%7Bd%7D%5E%7B%20%5Cfrac%7B1%7D%7B8%7D%20%7D%20%29%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%204%28%20%7Bd%7D%5E%7B3%7D%20%20%5Ctimes%20%20%5Csqrt%5B8%5D%7Bd%7D%20%29%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%204%20%20%5Csqrt%5B8%5D%7B%20%7Bd%7D%5E%7B3%7D%20%7D%20)
Answer:
Volume = ⅓n²(n-1) or ⅓(n³ - n²)
Step-by-step explanation:
Given
Solid Shape: Right pyramid
Edge= n units
Height= n - 1 units
Required
Volume of the pyramid
The volume of a right pyramid is
Volume = ⅓Ah
Where A represents the area of the base
h represent the height of the pyramid
Since it has a square base;
The area is calculated as follows
Area, A = edge * edge
A = n * n
A = n²
Recall that
Volume = ⅓Ah
Substitute n² for A and n - 1 for h
The expression becomes
Volume = ⅓ * n² * (n - 1)
Volume = ⅓n²(n-1)
The expression can be solved further by opening the bracket
Volume = ⅓(n³ - n²)
The equation of a parabola is given by

where

is the vertex.
We have the vertex is (-3,-2) so we have

and

Substituting -3 and -2 into the



Hence, the correct answer is
option D
X^-3 = 1/(x³)
............,.......