Answer:
it allows us to determine whether objects will float or sink when placed in a liquid or even a gas.
Explanation:
For example, In an oil spill in the ocean, the oil rises to the top because it is less dense than water, creating an oil slick on the surface of the ocean. A Styrofoam cup is less dense than a ceramic cup, so the Styrofoam cup will float in water and the ceramic cup will sink.
The balanced equation for the reaction is as follows;
Ca(OH)₂ + 2HBr --> CaBr₂ + 2H₂O
stoichiometry of Ca(OH)₂ to HBr is 1:2
number of Ca(OH)₂ moles reacted - 0.10 mol/L x 0.1000 L = 0.010 mol
Number of HBr moles added - 0.10 mol/L x 0.4000 = 0.040 mol
1 mol of Ca(OH)₂ needs 2 mol of HBr for neutralisation
therefore 0.010 mol of Ca(OH)₂ needs - 0.010 x 2 = 0.020 mol of HBr to be neutralised
but 0.040 mol of HBr has been added therefore number of moles of HBr in excess - 0.040 - 0.020 = 0.020 mol
then pH of the medium can be calculated using the excess H⁺ ions
HBr is a strong acid therefore complete ionization
[HBr] = [H⁺]
[H⁺] = 0.020 mol / (100.0 + 400.0 mL)
= 0.020 mol / 0.5 L
= 0.040 mol/L
pH = -log[H⁺]
pH = - log [0.040 M]
pH = 1.40
pH of the medium is 1.40
Don’t click that link EVER, they try to use your camera fsr