We know that each millimeter contains 10⁻³ meters. Writing this as a ratio:
1 mm : 10⁻³ m
We require a conversion from m³ to mm³, so we must take the cube of the ratio we have made:
1 mm³ = (10⁻³)³ m³
Therefore, the conversion used will be:
(1 mm / 10⁻³ m)³
When we multiply by this conversion, we will get:
32 m³ = 32 x 10⁹ mm³
Answer:
Enthalpy of formation = -947.68KJ/mol
Explanation:
Enthalpy of formation is the heat change when one mole of a substance is formed from its element in its standard states and in standard conditions of temperature and pressure. it may be positive or negative, if positive, it is an endothermic reaction where the heat content of the product is greater than that of the reactants, and if negative, it is exothermic reaction - where the heat content of the reactants is greater than the products. the enthalpy of formation is measured in KiloJoule/Moles (KJ/Mole).
From the value of the enthalpy of formation of NaHCO3, it shows that the reaction is exothermic, that is the formation of NaHCO3 from its constituents elements. As such, the heat content of the reactants is greater than the products.
The step by step explanation is shown in the attachment.
Answer:
D
Explanation:
The high jump of ionization energy indicates that we are trying to remove electron from noble gas configuration state.
The ionization energy data specifies that the Elements are from group 1 at period 3 or greater.
Removing the first electron require 496 kJ and the second ionization energy jump significantly due to the removal of electron from the noble gas configuration which is logical because electron try to maintain the especially stable state.