I don't have a calculator with me right now, but that mass would be 1200 grams. Divide the given amount of grams by the molar mass of NH3, which is 17.031g/mol. (Nitrogen + 3(hydrogen)). Again, sorry I didn't have a calculator. But all you would need to do is divide 1200 by 17.031. If you need to use sig figs, your answer should have 2 because the 1.2 x 10^3 limits your amount of sig figs.
Answer:
1. NaN₃(s) → Na(s) + 1.5 N₂(g)
2. 79.3g
Explanation:
<em>1. Write a balanced chemical equation, including physical state symbols, for the decomposition of solid sodium azide (NaN₃) into solid sodium and gaseous dinitrogen.</em>
NaN₃(s) → Na(s) + 1.5 N₂(g)
<em>2. Suppose 43.0L of dinitrogen gas are produced by this reaction, at a temperature of 13.0°C and pressure of exactly 1atm. Calculate the mass of sodium azide that must have reacted. Round your answer to 3 significant digits.</em>
First, we have to calculate the moles of N₂ from the ideal gas equation.

The moles of NaN₃ are:

The molar mass of NaN₃ is 65.01 g/mol. The mass of NaN₃ is:

This problem is providing two reduction-oxidation (redox) reactions in which the oxidized and reduced species can be identified by firstly setting the oxidation number of each element:
Reaction 1: 2K⁺I⁻ + H₂⁺O₂⁻ ⇒2K⁺O⁻²H⁺ + I₂⁰
Reaction 2: Cl₂⁰ + H₂⁰ ⇒ 2H⁺CI⁻
Next, we can see that iodine is being oxidized and oxygen reduced in reaction #1 and chlorine is being reduced and hydrogen oxidized in reaction #2 because the oxidized species increase the oxidation number whereas the reduced ones decrease it.
In such a way, the correct choice is C.
Learn more:
Answer:
Zn(NO₃)₂
Explanation:
this single replacement reaction will produce silver metal, Ag , and aqueous zinc nitrate, Zn(NO3)2 . Zinc is above silver is the metal reactivity series, so it will replace silver in silver nitrate