Answer:
<h2>Solution: Since, the prime factors of 226 are 2, 113. Therefore, the product of prime factors = 2 × 113 = 226.</h2>
Step-by-step explanation:
<h2>(。♡‿♡。)______________________</h2><h2>
<em><u>PLEASE</u></em><em><u> MARK</u></em><em><u> ME</u></em><em><u> BRAINLIEST</u></em><em><u> AND</u></em><em><u> FOLLOW</u></em><em><u> M</u></em><em><u> </u></em><em><u> </u></em><em><u>E </u></em><em><u>AND</u></em><em><u> SOUL</u></em><em><u> DARLING</u></em><em><u> TEJASWINI</u></em><em><u> SINHA</u></em><em><u> HERE</u></em><em><u> ❤️</u></em></h2>
So 2.5 os to 50, aka 2.5:50
divide each side by 2.5 to get the answer.
if you dont have a calculator, divide each side by 5 to get .5:10, multiply by 2 to get 1:20
Simplify the radical by breaking the radicand up into a product of known factors
Exact Form:
2√10 + 5
Decimal Form:
11.32455532 . . .
Answer: 2√10 + 5
Hope this helps! :)
~Zain
Step-by-step explanation:
Given
f(x) = 2x - 1
f^-1 (x) = ?
Now
Let y = f(x)
or y = 2x - 1
Interchanging the role of x and y
x = 2y - 1
x + 1 = 2y
y = <u>x </u><u>+</u><u> </u><u>1</u>
2
Therefore f^-1(x) = <u>x </u><u>+</u><u> </u><u>1</u>
2
Hope it will help you :)
Answer:
a = p * q
b = p * s + q * r
c = r * s
Step-by-step explanation:
In the trinomial ax² + bx + c
a is the coefficient of x²
b is the coefficient of x
c is the numerical term
∵ The trinomial is ax² + bx + c
∵ Its factors are (px + r) and (qx + s)
∴ ax² + bx + c = (px + r)(qx + s)
∵ (px + r)(qx + s) = (px)(qx) + (px)(s) + r(qx) + (r)(s)
∴ (px + r)(qx + s) = pqx² + (psx + qrx) + rs
∴ ax² + bx + c = pqx² + (ps + qr)x + rs
→ By comparing the two sides
∵ ax² = pqx² ⇒ divide both sides by x²
∴ a = pq
∵ bx = (ps + qr)x ⇒ Divide both sides by x
∴ b = ps + qr
∴ c = rs
∴ a = p * q
∴ b = p * s + q * r
∴ c = r * s