Answer: 26.5 mm Hg
Explanation:
The vapor pressure is determined by Clausius Clapeyron equation:

where,
= initial pressure at
= ?
= final pressure at
= 100 mm Hg
= enthalpy of vaporisation = 28.0 kJ/mol =28000 J/mol
R = gas constant = 8.314 J/mole.K
= initial temperature = 
= final temperature =
Now put all the given values in this formula, we get
![\log (\frac{P_1}{100})=\frac{28000}{2.303\times 8.314J/mole.K}[\frac{1}{299.5}-\frac{1}{267.9}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BP_1%7D%7B100%7D%29%3D%5Cfrac%7B28000%7D%7B2.303%5Ctimes%208.314J%2Fmole.K%7D%5B%5Cfrac%7B1%7D%7B299.5%7D-%5Cfrac%7B1%7D%7B267.9%7D%5D)



Thus the vapor pressure of
in mmHg at 26.5 ∘C is 26.5
First, find out how many grams are in one mole of CO2(the two oxygen atoms means you need to multiply oxygen’s amu by 2,then add whatever carbon’s amu is to that). Then divide 26 grams by that number and that will be your moles. There are only two significant figures, so round your answer correctly.
Answer:
See explanation
Explanation:
distance = 3 kilometres
time = 30 minutes or 0.5 hours
speed = distance/time = 3/0.5 = 6 Kmhr-1
Average speed is given by total distance covered divided by the total time taken while the instantaneous speed is the speed of an object at a particular instant or moment in time. Average speed refers to the whole journey while instantaneous speed refers to a particular point or instant in the journey.
distance= x
time = 3 hours
speed = 50 miles per hour
speed = distance/time
distance = speed * time
distance = 3 * 50
distance = 150 miles
24.4 cm.
<h3>Explanation</h3>
HCl and NH₃ reacts to form NH₄Cl immediately after coming into contact. Where NH₄Cl is found is the place the two gases ran into each other. To figure out where the two gases came into contact, you'll need to know how fast they move relative to each other.
The speed of a HCl or NH₃ molecule depends on its <em>kinetic energy</em>.

Where
is the <em>kinetic energy</em> of the molecule,
its mass, and
the square of its speed.
Besides, the <em>kinetic theory</em> <em>of gases</em> suggests that for an ideal gas,

where
its temperature in degrees kelvins. The two quantities are directly proportional to each other. In other words, the <em>average kinetic energy</em> of molecules shall be the same for <em>any ideal gas </em>at the same<em> temperature</em>. So is the case for HCl and NH₃


Where
,
, and
the mass, speed, and kinetic energy of an HCl molecule;
,
, and
the mass, speed, and kinetic energy of a NH₃ molecule.
The ratio between the mass of an HCl molecule and a NH₃ molecule equals to the ratio between their <em>molar mass</em>. HCl has a molar mass of 35.45; NH₃ has a molar mass of 17.03. As a result,
. Therefore:



The <em>average </em>speed NH₃ molecules would be
<em>if</em> the <em>average </em>speed of HCl molecules
is 1.

