The melting point of gallium is 85.59°F (29.77°C).
Consider the halogenation of ethene is as follows:
CH₂=CH₂(g) + X₂(g) → H₂CX-CH₂X(g)
We can expect that this reaction occurring by breaking of a C=C bond and forming of two C-X bonds.
When bond break it is endothermic and when bond is formed it is exothermic.
So we can calculate the overall enthalpy change as a sum of the required bonds in the products:
Part a)
C=C break = +611 kJ
2 C-F formed = (2 * - 552) = -1104 kJ
Δ H = + 611 - 1104 = - 493 kJ
2C-Cl formed = (2 * -339) = - 678 kJ
ΔH = + 611 - 678 = -67 kJ
2 C-Br formed = (2 * -280) = -560 kJ
ΔH = + 611 - 560 = + 51 kJ
2 C-I Formed = (2 * -209) = -418 kJ
ΔH = + 611 - 418 = + 193 kJ
Part b)
As we can see that the highest exothermic bond formed is C-F bond so from bond energies we can found that addition of fluoride is the most exothermic reaction
All oxayacids have cations so no need to name the cation (H+) If name of polyatomic anion ends in -ate change to -ic for acid and if it ends with -ite change to -ous for acid
example:
ion nitrate is called nitric acid
ion nitrate is called nitrous acid
Lithium is in the Alkali Metal group or 1A column. The atoms in this group form ions with a 1+ charge. Lithium ion’s charge is 1+.
An apple should be cut into 4 equal pieces, then put each slice in a separate container and label accordingly with letters A, B, C, and Control. Put water, ginger ale, and lemon juice into containers A, B, and C respectively but leave the Control untouched. Observe which of the slices in containers A, B, C will stay the same color after the one in control turns brown, if the slice maintains its color then the liquid added prevents an apple slice from browning. The variables are the liquids added and the control is the slice that did not have anything added to it.