Answer:
No, It is rational
Step-by-step explanation:
An number with a finite number of decimal point/numbers can be rational unlike numbers that repeat on forever like the number pi
Answer:

Step-by-step explanation:
As the given Augmented matrix is
![\left[\begin{array}{ccccc}9&-2&0&-4&:8\\0&7&-1&-1&:9\\8&12&-6&5&:-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D9%26-2%260%26-4%26%3A8%5C%5C0%267%26-1%26-1%26%3A9%5C%5C8%2612%26-6%265%26%3A-2%5Cend%7Barray%7D%5Cright%5D)
Step 1 :
↔
![\left[\begin{array}{ccccc}1&-14&6&-9&:10\\0&7&-1&-1&:9\\8&12&-6&5&:-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%26-14%266%26-9%26%3A10%5C%5C0%267%26-1%26-1%26%3A9%5C%5C8%2612%26-6%265%26%3A-2%5Cend%7Barray%7D%5Cright%5D)
Step 2 :
↔
![\left[\begin{array}{ccccc}1&-14&6&-9&:10\\0&7&-1&-1&:9\\0&124&-54&77&:-82\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%26-14%266%26-9%26%3A10%5C%5C0%267%26-1%26-1%26%3A9%5C%5C0%26124%26-54%2677%26%3A-82%5Cend%7Barray%7D%5Cright%5D)
Step 3 :
↔
![\left[\begin{array}{ccccc}1&-14&6&-9&:10\\0&1&-\frac{1}{7} &-\frac{1}{7} &:\frac{9}{7} \\0&124&-54&77&:-82\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%26-14%266%26-9%26%3A10%5C%5C0%261%26-%5Cfrac%7B1%7D%7B7%7D%20%26-%5Cfrac%7B1%7D%7B7%7D%20%26%3A%5Cfrac%7B9%7D%7B7%7D%20%5C%5C0%26124%26-54%2677%26%3A-82%5Cend%7Barray%7D%5Cright%5D)
Step 4 :
↔
,
↔
![\left[\begin{array}{ccccc}1&0&4&-11&:-8\\0&1&-\frac{1}{7} &-\frac{1}{7} &:\frac{9}{7} \\0&0&- \frac{254}{7} &\frac{663}{7} &:-\frac{1690}{7} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%260%264%26-11%26%3A-8%5C%5C0%261%26-%5Cfrac%7B1%7D%7B7%7D%20%26-%5Cfrac%7B1%7D%7B7%7D%20%26%3A%5Cfrac%7B9%7D%7B7%7D%20%5C%5C0%260%26-%20%5Cfrac%7B254%7D%7B7%7D%20%26%5Cfrac%7B663%7D%7B7%7D%20%26%3A-%5Cfrac%7B1690%7D%7B7%7D%20%5Cend%7Barray%7D%5Cright%5D)
Step 5 :
↔
![\left[\begin{array}{ccccc}1&0&4&-11&:-8\\0&1&-\frac{1}{7} &-\frac{1}{7} &:\frac{9}{7} \\0&0&1&-\frac{663}{254} &:-\frac{1690}{254} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%260%264%26-11%26%3A-8%5C%5C0%261%26-%5Cfrac%7B1%7D%7B7%7D%20%26-%5Cfrac%7B1%7D%7B7%7D%20%26%3A%5Cfrac%7B9%7D%7B7%7D%20%5C%5C0%260%261%26-%5Cfrac%7B663%7D%7B254%7D%20%26%3A-%5Cfrac%7B1690%7D%7B254%7D%20%5Cend%7Barray%7D%5Cright%5D)
Step 6 :
↔
,
↔
![\left[\begin{array}{ccccc}1&0&0&-\frac{71}{127} &:\frac{176}{127} \\0&1&0&-\frac{131}{254} &:\frac{284}{127} \\0&0&1&-\frac{663}{254} &:\frac{845}{127} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%260%260%26-%5Cfrac%7B71%7D%7B127%7D%20%26%3A%5Cfrac%7B176%7D%7B127%7D%20%5C%5C0%261%260%26-%5Cfrac%7B131%7D%7B254%7D%20%26%3A%5Cfrac%7B284%7D%7B127%7D%20%5C%5C0%260%261%26-%5Cfrac%7B663%7D%7B254%7D%20%26%3A%5Cfrac%7B845%7D%7B127%7D%20%5Cend%7Barray%7D%5Cright%5D)
∴ we get

Answer:
Step-by-step explanation:
Given that :
The enormous sinkhole that appeared in the middle of Guatemalan neighborhood in the year 2010 swallowed a three story building above it and the sinkhole has an estimated depth of about 100 feet
How much material is needed to fill the sinkhole?
Then , the material needed to fill the sinkhole will be dependent on the volume of the sinkhole.
Determine what information is needed to answer the question.
The information that is needed to answer this question are:
the base area of the sinkhole will be required; &
the height should also be known
if the base area is determined then we can proceed to determine how much material is needed to be calculated.
Do you think your estimate is more likely to be too high or too low
No, the estimate is not likely to be too high or too low rather the estimate of the material required will be almost equal to the volume of the sinkhole, but that does not implies that it will be exactly the same since the sinkhole is not uniform and regular in shape.
Answer:
c. 3.6 and 10.4 hrs
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
68% of the measures are within 1 standard deviation of the mean.
95% of the measures are within 2 standard deviations of the mean.
99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean 7, standard deviation 1.7.
For about 95% of students, nightly amount of sleep is between
7 - 2*1.7 = 7 - 3.4 = 3.6 hours
7 + 2*1.7 = 7 + 3.4 = 10.4 hours
So the correct answer is:
c. 3.6 and 10.4 hrs
Let 1 number equal x
<span>Let the other number equal 1/2x + 6
x + (1/2x + 6) =21
1 & 1/2 x + 6 =21
1 & 1/2 x =15
</span>